Predicting Novel 2D MB2 (M = Ti, Hf, V, Nb, Ta) Monolayers with Ultrafast Dirac Transport Channel and Electron-Orbital Controlled Negative Poisson's Ratio

被引:80
作者
Zhang, Chunmei [1 ]
He, Tianwei [1 ]
Matta, Kasi [1 ]
Liao, Ting [1 ]
Kou, Liangzhi [1 ]
Chen, Zhongfang [2 ]
Du, Aijun [1 ]
机构
[1] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Gardens Point Campus, Brisbane, Qld 4001, Australia
[2] Univ Puerto Rico, Dept Chem, Rio Piedras Campus, San Juan, PR 00931 USA
基金
澳大利亚研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; SUPERCONDUCTING MGB2; BAND-STRUCTURE; GRAPHENE; SEMICONDUCTORS; DIBORIDES; METALS; DESIGN;
D O I
10.1021/acs.jpclett.9b00762
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three-dimensional diborides MB2, featured in stacking the M layer above the middle of the honeycomb boron layer, have been extensively studied. However, little a) available. Here, by means of evolutionary algorithm and first-principles calculations, we extensively studied the monolayer MB2 crystal with M elements ranging from group IIA to IVA covering 34 candidates. Our computations screened out eight stable monolayers MB2 (M = Be, Mg, Fe, Ti, Hf, V, Nb, Ta), and they exhibit Dirac-like band structures. Dramatically, among them, groups IVB-VB transition-metal diboride MB2 (M = Ti, Hf, V, Nb, Ta) are predicted to be a new class of auxetic materials. They harbor in-plane negative Poisson's ratio (NPR) arising mainly from the orbital hybridization between M d and Boron p orbitals, which is distinct from previously reported auxetic materials. The unusual NPR and the Dirac transport channel of these materials are applicable to nanoelectronics and nanomechanics.
引用
收藏
页码:2567 / +
页数:13
相关论文
共 55 条
[1]   Surface phonon dispersion of ZrB2(0001) and NbB2(0001) -: art. no. 024303 [J].
Aizawa, T ;
Hayami, W ;
Otani, S .
PHYSICAL REVIEW B, 2002, 65 (02)
[2]   Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers [J].
An, Yipeng ;
Jiao, Jutao ;
Hou, Yusheng ;
Wang, Hui ;
Wu, Rudian ;
Liu, Chengyan ;
Chen, Xuenian ;
Wang, Tianxing ;
Wang, Kun .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (06)
[3]  
[Anonymous], 2011, The materials project
[4]  
[Anonymous], 2011, MAT GENOME INITIATIV
[5]   Evolution of multigap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB2 [J].
Bekaert, J. ;
Aperis, A. ;
Partoens, B. ;
Oppeneer, P. M. ;
Milosevic, M. V. .
PHYSICAL REVIEW B, 2017, 96 (09)
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   ELECTRONIC-STRUCTURE OF TRANSITION-METAL BORIDES WITH THE ALB2 STRUCTURE [J].
BURDETT, JK ;
CANADELL, E ;
MILLER, GJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (21) :6561-6568
[8]  
Castaing J., 1977, Boron and refractory borides, P390
[9]   Computational prediction of new auxetic materials [J].
Dagdelen, John ;
Montoya, Joseph ;
de Jong, Maarten ;
Persson, Kristin .
NATURE COMMUNICATIONS, 2017, 8
[10]  
Evans KE, 2000, ADV MATER, V12, P617, DOI 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO