Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry

被引:9
作者
Hernandez, Erwin [2 ]
Otarola, Enrique [2 ]
Rodriguez, Rodolfo [1 ]
Sanhueza, Frank [1 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
关键词
FINITE-ELEMENT METHODS; CONVERGENCE; ACCURACY; LOCKING;
D O I
10.1093/imanum/drn002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyse a mixed finite-element method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displacements, rotations and shear stresses of the vibration modes, as well as a double order of convergence for the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the performance of the method.
引用
收藏
页码:180 / 207
页数:28
相关论文
共 18 条
[1]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[2]   MIXED FINITE-ELEMENT METHODS FOR ELASTIC RODS OF ARBITRARY GEOMETRY [J].
ARUNAKIRINATHAR, K ;
REDDY, BD .
NUMERISCHE MATHEMATIK, 1993, 64 (01) :13-43
[3]  
Babuka I., 1991, Handbook of Numerical Analysis, VII, P641
[4]   ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1261-1293
[5]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
[6]  
Boffi D., 1997, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V25, P131
[7]   A locking-free approximation of curved rods by straight beam elements [J].
Chapelle, D .
NUMERISCHE MATHEMATIK, 1997, 77 (03) :299-322
[8]   Approximation of the vibration modes of a plate by Reissner-Mindlin equations [J].
Durán, RG ;
Hervella-Nieto, L ;
Liberman, E ;
Rodríguez, R ;
Solomin, J .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1447-1463
[9]   Error estimates for low-order isoparametric quadrilateral finite elements for plates [J].
Durán, RG ;
Hernández, E ;
Hervella-Nieto, L ;
Liberman, E ;
Rodríguez, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1751-1772
[10]  
Fortin M., 1991, Mixed and Hybrid Finite Element Methods