Quantum monodromy and semi-classical trace formula

被引:50
作者
Sjöstrand, J [1 ]
Zworski, M
机构
[1] Ecole Polytech, Ctr Math, UMR 7460, CNRS, F-91128 Palaiseau, France
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2002年 / 81卷 / 01期
基金
美国国家科学基金会;
关键词
semi-classical; trace formula; monodromy;
D O I
10.1016/S0021-7824(01)01230-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an h-pseudodifferential operator whose symbol has a closed Hamiltonian trajectory. There exists a Fourier integral operator which quantizes in a natural way the Poincare map. With the help of this monodromy operator, we give a trace formula which leads to a new proof of the trace formula of Duistermaat-Guillemin and Gutzwiller. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 15 条
  • [1] [Anonymous], 2000, 1 SUMMER SCH ANAL MA
  • [2] A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition
    Combescure, M
    Ralston, J
    Robert, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (02) : 463 - 480
  • [3] DAZORD P, 1977, J MATH PURE APPL, V56, P231
  • [4] Dimassi M., 1999, LONDON MATH SOC LECT, V269
  • [5] SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS
    DUISTERMAAT, JJ
    GUILLEMIN, VW
    [J]. INVENTIONES MATHEMATICAE, 1975, 29 (01) : 39 - 79
  • [6] Gutzwiller M. C., 1997, LECT NOTE PHYS, V485, P8
  • [7] HELFFER B, 1990, ANN I H POINCARE-PHY, V52, P303
  • [8] Helffer J., 1989, Mem. Soc. Math. Fr., V1, P1
  • [9] Hormander L., 1985, ANAL LINEAR PARTIAL
  • [10] Hormander L., 1985, ANAL LINEAR PARTIAL, VIV