Superconducting Strand and Cable Development for the LHC Upgrades and Beyond

被引:18
作者
Barzi, E. [1 ]
Andreev, N. [1 ]
Apollinari, G. [1 ]
Bucciarelli, F. [2 ]
Lombardo, V. [1 ]
Nobrega, F. [1 ]
Turrioni, D. [1 ]
Yamada, R. [1 ]
Zlobin, A. V. [1 ]
机构
[1] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[2] Scuola Super Sant Anna, I-56127 Pisa, Italy
关键词
Accelerator magnet; Nb3Sn wires; Rutherford cable; subelement; NB3SN STRANDS; ACCELERATOR; TRANSFORMER; MAGNETS; COIL;
D O I
10.1109/TASC.2013.2240038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fermilab and CERN have started the development of 11 T Nb3Sn dipoles to replace a number of Large Hadron Collider (LHC) NbTi dipole magnets and free space for the additional collimators anticipated for the LHC luminosity upgrades. An essential step in the design of these magnets is the development of the 40-strand, high aspect ratio cable needed to achieve the nominal field of 11 T at the LHC operating current of 11.85 kA. To investigate conductors suited for this and other high-field magnet applications, a larger Superconducting Strand and Cable R&D lab was established at FNAL's Technical Division. Keystoned cables with and without a stainless steel core were developed and produced using 0.7 mm Nb3Sn strands made by Oxford Superconducting Technology with 127 (baseline) and 169 (advanced) restacks using the Restacked-Rod-Process. The electrical performance of these two strands is compared in cables made with different processes and geometries. Some of the effects of a cross-over in the cable were measured. Finally, it is shown how finite element modeling can be used as an aid in Rutherford-type cable design.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Progress in the Long Nb3Sn Quadrupole R&D by LARP [J].
Ambrosio, G. ;
Andreev, N. ;
Anerella, M. ;
Barzi, E. ;
Bocian, D. ;
Bossert, R. ;
Buehler, M. ;
Caspi, S. ;
Chlachidze, G. ;
Dietderich, D. ;
DiMarco, J. ;
Escallier, J. ;
Felice, H. ;
Ferracin, P. ;
Ghosh, A. ;
Godeke, A. ;
Hafalia, R. ;
Hannaford, R. ;
Jochen, G. ;
Kim, M. J. ;
Kovach, P. ;
Lamm, M. ;
Marchevsky, M. ;
Muratore, J. ;
Nobrega, F. ;
Orris, D. ;
Prebys, E. ;
Prestemon, S. ;
Sabbi, G. L. ;
Schmalzle, J. ;
Sylvester, C. ;
Tartaglia, M. ;
Turrioni, D. ;
Velev, G. ;
Wanderer, P. ;
Whitson, G. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
[2]   Development of rutherford-type cables for high field accelerator magnets at fermilab [J].
Andreev, N. ;
Barzi, E. ;
Borissov, E. ;
Elementi, L. ;
Kashikhin, V. S. ;
Lombardo, V. ;
Rusy, A. ;
Turrioni, D. ;
Yamada, R. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) :1027-1030
[3]   Superconducting current transformer for testing Nb3Sn cable splicing technique [J].
Andreev, N ;
Barzi, E ;
Bhashyam, S ;
Boffo, C ;
Chichili, DR ;
Yadav, S ;
Terechkine, I ;
Zlobin, AV .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) :1274-1277
[4]  
[Anonymous], 2011, P 2011 PART ACC C NE
[5]   Effect of transverse pressure on brittle superconductors [J].
Barzi, E. ;
Turrioni, D. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2008, 18 (02) :980-983
[6]  
Barzi E, 2008, AIP CONF PROC, V986, P431
[7]  
Barzi E, 2006, AIP CONF PROC, V824, P566
[8]   Study of Nb3Sn cable stability at self-field using a SC transformer [J].
Barzi, E ;
Andreev, N ;
Kashikhin, VV ;
Turrioni, D ;
Zlobin, AV .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1537-1540
[9]   Nb3Sn CABLE DEVELOPMENT FOR THE 11 T DIPOLE DEMONSTRATION MODEL [J].
Barzi, E. ;
Lombardo, V. ;
Nobrega, A. ;
Turrioni, D. ;
Yamada, R. ;
Zlobin, A. V. ;
Karppinen, M. .
ADVANCES IN CRYOGENIC ENGINEERING, VOLS 57A AND 57B, 2012, 1434 :641-648
[10]   Development and Fabrication of Nb3Sn Rutherford Cable for the 11 T DS Dipole Demonstrator Model [J].
Barzi, E. ;
Andreev, N. ;
Karppinen, M. ;
Lombardo, V. ;
Nobrega, F. ;
Turrioni, D. ;
Yamada, R. ;
Zlobin, A. V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)