Quasilinear elliptic problem without Ambrosetti-Rabinowitz condition involving a potential in Musielak-Sobolev spaces setting

被引:1
作者
Maatouk, Soufiane [1 ]
El Hachimi, Abderrahmane [1 ]
机构
[1] Mohammed V Univ, Fac Sci, Ctr Math Res & Applicat Rabat CeReMAR, Lab Math Anal & Applicat LAMA,Dept Math, Rabat, Morocco
关键词
Quasilinear elliptic equations; Musielak-Sobolev spaces; potential function; Ambrosetti-Rabinowitz condition; NONHOMOGENEOUS DIRICHLET PROBLEMS; EQUATIONS;
D O I
10.1080/17476933.2020.1801654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the quasilinear elliptic problem with potential (p){-div(phi(x, vertical bar del u vertical bar del u) + V(x)vertical bar u vertical bar(q(x)-2) u = f(x, u) in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 2), V is a given function in a generalized Lebesgue space L-s(x) (Omega), and f(x,u) is a Caratheodory function satisfying suitable growth conditions. Using variational arguments, we study the existence of weak solutions for (P) in the framework of Musielak-Sobolev spaces. The main difficulty here is that the nonlinearity f(x,u) considered does not satisfy the well-known Ambrosetti-Rabinowitz condition.
引用
收藏
页码:2028 / 2054
页数:27
相关论文
共 37 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] [Anonymous], 2016, ELECTRON J DIFF 0724
  • [3] [Anonymous], 1976, Funct. Approx. Comment. Math.
  • [4] On the eigenvalues of weighted p(x)-Laplacian on RN
    Benouhiba, Nawel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 235 - 243
  • [5] Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4441 - 4456
  • [6] Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4785 - 4795
  • [7] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [8] Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 305 - 318
  • [9] Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent
    Boureanu, Maria-Magdalena
    Pucci, Patrizia
    Radulescu, Vicentiu D.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 755 - 767
  • [10] On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition
    Carvalho, M. L. M.
    Goncalves, Jose V. A.
    da Silva, E. D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 466 - 483