Artin's primitive root conjecture for function fields revisited

被引:3
作者
Kim, Seoyoung [1 ]
Murty, M. Ram [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Artin's conjecture; Function fields; Finite fields;
D O I
10.1016/j.ffa.2020.101713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Artin's primitive root conjecture for function fields was proved by Bilharz in his thesis in 1937, conditionally on the proof of the Riemann hypothesis for function fields over finite fields, which was proved later by Weil in 1948. In this paper, we provide a simple proof of Artin's primitive root conjecture for function fields which does not use the Riemann hypothesis for function fields but rather modifies the classical argument of Hadamard and de la Vallee Poussin in their 1896 proof of the prime number theorem. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1976, LECT NOTES MATH
[2]   Prime divisors with pretended primitive root. [J].
Bilharz, H .
MATHEMATISCHE ANNALEN, 1937, 114 :476-492
[3]  
Bombieri E, 1974, Lecture Notes in Math., V383, P234
[4]  
Cojocaru Alina C., 2002, THESIS, P152
[5]   On character sums in finite fields [J].
Davenport, H .
ACTA MATHEMATICA, 1939, 71 (01) :99-121
[6]  
Deligne P., 1973, PUBL MATH I HAUTES E, V43, P273
[7]   A REMARK ON ARTINS CONJECTURE [J].
GUPTA, R ;
MURTY, MR .
INVENTIONES MATHEMATICAE, 1984, 78 (01) :127-130
[8]  
Hardy G. H., 2008, An Introduction to the Theory of Numbers, Vsixth
[9]   ARTIN CONJECTURE FOR PRIMITIVE ROOTS [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (145) :27-38
[10]  
HOOLEY C, 1967, J REINE ANGEW MATH, V225, P209