Biomarker discovery in mass spectral profiles by means of selectivity ratio plot

被引:221
作者
Rajalahti, Tarja [3 ,4 ]
Arneberg, Reidar [5 ]
Berven, Frode S. [6 ]
Myhr, Kjell-Morten [1 ,3 ,4 ]
Ulvik, Rune J. [6 ,7 ]
Kvalheim, Olav M. [2 ]
机构
[1] Haukeland Hosp, Norwegian Multiple Sclerosis Natl Competence Ctr, N-5021 Bergen, Norway
[2] Univ Bergen, Dept Chem, N-5007 Bergen, Norway
[3] Univ Bergen, Dept Clin Med, N-5007 Bergen, Norway
[4] Haukeland Hosp, Dept Neurol, N-5021 Bergen, Norway
[5] Pattern Recognit Syst AS, Bergen, Norway
[6] Univ Bergen, Inst Med, N-5007 Bergen, Norway
[7] Haukeland Hosp, Lab Clin Biochem, N-5021 Bergen, Norway
关键词
Biomarkers; Variable selection; Target projection; Discriminant analysis; Cerebrospinal fluid; PRINCIPAL COMPONENTS MODELS; VARIABLE REGRESSION-MODELS; CHROMATOGRAPHY/MASS SPECTROMETRY; MS; CLASSIFICATION; METABOLOMICS; PROTEOMICS; ALIGNMENT; DATASETS; PLASMA;
D O I
10.1016/j.chemolab.2008.08.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a new method for variable selection in complex spectral profiles. The method is validated by comparing samples from cerebrospinal fluid (CSF) with the same samples spiked with peptide and protein standards at different concentration levels. Partial least squares discriminant analysis (PLS-DA) attempts to separate two groups of samples by regressing on a y-vector consisting of zeros and ones in the PLS decomposition. In most cases. several PLS components are needed to optimize the discrimination between groups. This creates difficulties for the interpretation of the model. By using the y-vector as a target. it is possible to transform the PLS components to obtain a single predictive target-projected component analogously to the predictive component in orthogonal partial least squares discriminant analysis (OPLS-DA). By calculating the ratio between explained and residual variance of the spectral variables on the target-projected component, a selectivity ratio plot is obtained that can be used for variable selection. Used on whole mass spectral profiles of pure and spiked CSF, we can detect peptide in the low molecular mass range (740-9000 Da) at least down to 400 pM level without severe problems with false biomarker candidates. Similarly, we detect added proteins at least down to 2 nM level in the medium mass range (6000-17,500 Da). Target projection represents the optimal way to fit a latent variable decomposition to a known target, but the selectivity ratio plot can be used for OPLS as well as other methods that produce a single predictive component. Comparison with some commonly used tools for variable selection shows that the selectivity ratio plot has the best performance. This observation is attributed to the fact that target projection utilizes both the predictive ability (regression coefficients) and the explanatory ability (spectral variance/covariance matrix) for the calculation of the selectivity ratio. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2013, Multi-and megavariate data analysis basic principles and applications
[2]   Pretreatment of mass spectral profiles: Application to proteomic data [J].
Arneberg, Reidar ;
Rajalahti, Tarja ;
Flikka, Kristian ;
Berven, Frode S. ;
Kroksveen, Ann C. ;
Berle, Magnus ;
Myhr, Kjell-Morten ;
Vedeler, Christian A. ;
Ulvik, Rune J. ;
Kvalheim, Olav M. .
ANALYTICAL CHEMISTRY, 2007, 79 (18) :7014-7026
[3]   Pre-analytical influence on the low molecular weight cerebrospinal fluid proteome [J].
Berven, Frode S. ;
Kroksveen, Ann C. ;
Berle, Magnus ;
Rajalahti, Tarja ;
Flikka, Kristian ;
Arneberg, Reidar ;
Myhr, Kjell-Morten ;
Vedeler, Christian ;
Kvalheim, Olav M. ;
Ulvik, Rune J. .
PROTEOMICS CLINICAL APPLICATIONS, 2007, 1 (07) :699-711
[4]   Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis [J].
Bruce, Stephen J. ;
Jonsson, Par ;
Antti, Henrik ;
Cloarec, Olivier ;
Trygg, Johan ;
Marklund, Stefan L. ;
Moritz, Thomas .
ANALYTICAL BIOCHEMISTRY, 2008, 372 (02) :237-249
[5]   OPLS discriminant analysis:: combining the strengths of PLS-DA and SIMCA classification [J].
Bylesjo, Max ;
Rantalainen, Mattias ;
Cloarec, Olivier ;
Nicholson, Jeremy K. ;
Holmes, Elaine ;
Trygg, Johan .
JOURNAL OF CHEMOMETRICS, 2006, 20 (8-10) :341-351
[6]   How to distinguish healthy from diseased? Classification strategy for mass specitrometry-based clinical proteomics [J].
Hendriks, Margriet M. WB. ;
Smit, Suzanne ;
Akkermans, Wies L. M. W. ;
Reijmers, Theo H. ;
Eilers, Paul H. C. ;
Hoefsloot, Huub C. J. ;
Rubingh, Carina M. ;
de Koster, Chris G. ;
Aerts, Johannes M. ;
Smilde, Age K. .
PROTEOMICS, 2007, 7 (20) :3672-3680
[7]   Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis [J].
Idborg-Björkman, H ;
Edlund, PO ;
Kvalheim, OM ;
Schuppe-Koistinen, I ;
Jacobsson, SP .
ANALYTICAL CHEMISTRY, 2003, 75 (18) :4784-4792
[8]   Extraction and GC/MS analysis of the human blood plasma metabolome [J].
A, J ;
Trygg, J ;
Gullberg, J ;
Johansson, AI ;
Jonsson, P ;
Antti, H ;
Marklund, SL ;
Moritz, T .
ANALYTICAL CHEMISTRY, 2005, 77 (24) :8086-8094
[9]   LASER DESORPTION IONIZATION OF PROTEINS WITH MOLECULAR MASSES EXCEEDING 10000 DALTONS [J].
KARAS, M ;
HILLENKAMP, F .
ANALYTICAL CHEMISTRY, 1988, 60 (20) :2299-2301
[10]   INTERPRETATION OF LATENT-VARIABLE REGRESSION-MODELS [J].
KVALHEIM, OM ;
KARSTANG, TV .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 7 (1-2) :39-51