Injectivity radius bound of Ricci flow with positive Ricci curvature and applications

被引:0
作者
Ma, Li [1 ,2 ]
Zhu, Anqiang [3 ]
机构
[1] Henan Normal Univ, Zhongyuan Inst Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[3] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Injectivity radius bound; Ricci flow; positive Ricci curvature; global solution; RIEMANNIAN-MANIFOLDS; 3-MANIFOLDS; BEHAVIOR;
D O I
10.1007/s11464-013-0296-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the injectivity radius bound for 3-d Ricci flow with bounded curvature. As applications, we show the long time existence of the Ricci flow with positive Ricci curvature and with curvature decay condition at infinity. We partially settle a question of Chow-Lu-Ni [Hamilton's Ricci Flow, p. 302].
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 25 条
  • [1] Anderson M T, 1989, MATH ANN, V284, P284
  • [2] [Anonymous], 1966, GRUNDLEHREN MATH WIS
  • [3] Carron G., 1996, SEMIN C, V1, P205
  • [4] CHEEGER J, 1982, J DIFFER GEOM, V17, P15
  • [5] Chow B., 2007, Mathematical Surveys and Monographs, V135
  • [6] Chow B., 2006, Hamiltons Ricci Flow. Graduate Studies in Mathematics, V77
  • [7] Colding T. H., 1999, MINIMAL SURFACES, V4
  • [8] HAMILTON R.S, 1995, SURVEYS DIFFERENTIAL, VII, P7
  • [9] Non-singular solutions of the Ricci flow on three-manifolds
    Hamilton, RS
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (04) : 695 - 729
  • [10] HILDEBRANDT S, 1969, ARCH RATION MECH AN, V35, P47