The spectral excess theorem for distance-biregular graphs

被引:0
作者
Angel Fiol, Miquel [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, Barcelona, Catalonia, Spain
关键词
The spectral excess theorem; Distance-biregular graph; Local spectra; Pre-distance polynomials; REGULARIZED GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectral excess theorem for distance-regular graphs states that a regular (connected) graph is distance-regular if and only if its spectral-excess equals its average excess. A bipartite graph Gamma is distance-biregular when it is distance-regular around each vertex and the intersection array only depends on the stable set such a vertex belongs to. In this note we derive a new version of the spectral excess theorem for bipartite distance-biregular graphs.
引用
收藏
页数:10
相关论文
共 16 条
[1]  
Biggs N.L., 1974, Algebraic Graph Theory
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]  
Cámara M, 2009, ELECTRON J COMB, V16
[5]  
Cvetkovic D.M., 1982, Spectra of Graphs -Theory and Application, V2nd
[6]   On almost distance-regular graphs [J].
Dalfo, C. ;
van Dam, E. R. ;
Fiol, M. A. ;
Garriga, E. ;
Gorissen, B. L. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1094-1113
[7]   DISTANCE BIREGULAR BIPARTITE GRAPHS [J].
DELORME, C .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (03) :223-238
[8]   Pseudo-distance-regularized graphs are distance-regular or distance-biregular [J].
Fiol, M. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (12) :2973-2977
[9]   A simple proof of the spectral excess theorem for distance-regular graphs [J].
Fiol, M. A. ;
Gago, S. ;
Garriga, E. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2418-2422
[10]   From local adjacency polynomials to locally pseudo-distance-regular graphs [J].
Fiol, MA ;
Garriga, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :162-183