An Effective Approach to Achieve a Spin Gapless SemiconductorHalf-MetalMetal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via Interactions

被引:38
作者
Guan, Jia [1 ]
Chen, Wei [1 ]
Li, Yafei [2 ]
Yu, Guangtao [1 ]
Shi, Zhiming [1 ]
Huang, Xuri [1 ]
Sun, Chiachung [1 ]
Chen, Zhongfang [2 ]
机构
[1] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
[2] Univ Puerto Rico, Dept Chem, Inst Funct Nanomat, San Juan, PR 00931 USA
关键词
graphene nanoribbons; polydiacetylenes derivatives; -; interaction; electronic structures; density functional calculations; NONLINEAR-OPTICAL PROPERTIES; SOLID-STATE POLYMERIZATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; HALF-METALLICITY; ELECTRIC-FIELD; CARBON; GRAPHITE; GAP; POLYDIACETYLENES;
D O I
10.1002/adfm.201201677
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Under first-principles computations, a simple strategy is identified to modulate the electronic and magnetic properties of zigzag graphene nanoribbons (zGNRs). This strategy takes advantage of the effect of the floating dipole field attached to zGNRs via interactions. This dipole field is induced by the acceptor/donor functional groups, which decorate the ladder-structure polydiacetylene derivatives with an excellent delocalized -conjugated backbone. By tuning the acceptor/donor groups, CC number, and zGNR width, greatly enriched electronic and magnetic properties, e.g., spin gapless semiconducting, half-metallic, and metallic behaviors, with the antiferromagneticferromagnetic conversion can be achieved in zGNRs with perfect, 57-reconstructed, and partially hydrogenated edge patterns.
引用
收藏
页码:1507 / 1518
页数:12
相关论文
共 96 条
[71]   SOLID-STATE POLYMERIZATION OF 15,17,19,21,23,25-TETRACONTAHEXAYNE [J].
OKADA, S ;
HAYAMIZU, K ;
MATSUDA, H ;
MASAKI, A ;
MINAMI, N ;
NAKANISHI, H .
MACROMOLECULES, 1994, 27 (22) :6259-6266
[72]   Improved third-order nonlinear optical properties of polydiacetylene derivatives [J].
Okada, S ;
Nakanishi, H ;
Matsuzawa, H ;
Katagi, H ;
Oshikiri, T ;
Kasai, H ;
Sarkar, A ;
Oikawa, H ;
Rangel-Rojo, R ;
Fukuda, T ;
Matsuda, H .
ORGANIC NONLINEAR OPTICAL MATERIALS, 1999, 3796 :76-87
[73]   Tuning of the Band Structures of Zigzag Graphene Nanoribbons by an Electric Field and Adsorption of Pyridine and BF3: A DFT Study [J].
Park, Heesoo ;
Lee, Jin Yong ;
Shin, Seokmin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (37) :20054-20061
[74]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[75]   Chaotic dirac billiard in graphene quantum dots [J].
Ponomarenko, L. A. ;
Schedin, F. ;
Katsnelson, M. I. ;
Yang, R. ;
Hill, E. W. ;
Novoselov, K. S. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5874) :356-358
[76]  
Ritter KA, 2009, NAT MATER, V8, P235, DOI [10.1038/NMAT2378, 10.1038/nmat2378]
[77]   Electronic materials - Making graphene for macroelectronics [J].
Rogers, John A. .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :254-255
[78]   MATERIALS SCIENCE Carbon Sheets an Atom Thick Give Rise to Graphene Dreams [J].
Service, Robert F. .
SCIENCE, 2009, 324 (5929) :875-877
[79]   Electronics and Magnetism of Patterned Graphene Nanoroads [J].
Singh, Abhshek K. ;
Yakobson, Boris I. .
NANO LETTERS, 2009, 9 (04) :1540-1543
[80]   Energy gaps in graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)