An Effective Approach to Achieve a Spin Gapless SemiconductorHalf-MetalMetal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via Interactions

被引:38
作者
Guan, Jia [1 ]
Chen, Wei [1 ]
Li, Yafei [2 ]
Yu, Guangtao [1 ]
Shi, Zhiming [1 ]
Huang, Xuri [1 ]
Sun, Chiachung [1 ]
Chen, Zhongfang [2 ]
机构
[1] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
[2] Univ Puerto Rico, Dept Chem, Inst Funct Nanomat, San Juan, PR 00931 USA
关键词
graphene nanoribbons; polydiacetylenes derivatives; -; interaction; electronic structures; density functional calculations; NONLINEAR-OPTICAL PROPERTIES; SOLID-STATE POLYMERIZATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; HALF-METALLICITY; ELECTRIC-FIELD; CARBON; GRAPHITE; GAP; POLYDIACETYLENES;
D O I
10.1002/adfm.201201677
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Under first-principles computations, a simple strategy is identified to modulate the electronic and magnetic properties of zigzag graphene nanoribbons (zGNRs). This strategy takes advantage of the effect of the floating dipole field attached to zGNRs via interactions. This dipole field is induced by the acceptor/donor functional groups, which decorate the ladder-structure polydiacetylene derivatives with an excellent delocalized -conjugated backbone. By tuning the acceptor/donor groups, CC number, and zGNR width, greatly enriched electronic and magnetic properties, e.g., spin gapless semiconducting, half-metallic, and metallic behaviors, with the antiferromagneticferromagnetic conversion can be achieved in zGNRs with perfect, 57-reconstructed, and partially hydrogenated edge patterns.
引用
收藏
页码:1507 / 1518
页数:12
相关论文
共 96 条
[1]   Polaron injection into one-dimensional polydiacetylene nanowire [J].
Akai-Kasaya, M ;
Yamamoto, Y ;
Saito, A ;
Aono, M ;
Kuwahara, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (3B) :2049-2052
[2]   Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite [J].
Akai-Kasaya, M ;
Shimizu, K ;
Watanabe, Y ;
Saito, A ;
Aono, M ;
Kuwahara, Y .
PHYSICAL REVIEW LETTERS, 2003, 91 (25)
[3]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[4]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Quantum Transport in Graphene Nanonetworks [J].
Botello-Mendez, Andres R. ;
Cruz-Silva, Eduardo ;
Romo-Herrera, Jose M. ;
Lopez-Urias, Florentino ;
Terrones, Mauricio ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Charlier, Jean-Christophe ;
Meunier, Vincent .
NANO LETTERS, 2011, 11 (08) :3058-3064
[8]  
Boukhvalov DW, 2008, NANO LETT, V8, P4373, DOI [10.1021/nl802234n, 10.1021/nl802098g]
[9]   Graphene gets ready for the big time [J].
Brumfiel, Geoff .
NATURE, 2009, 458 (7237) :390-391
[10]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)