Long periodic shadowing

被引:17
作者
Coomes, BA [1 ]
Kocak, H [1 ]
Palmer, KJ [1 ]
机构
[1] UNIV MIAMI,DEPT MATH & COMP SCI,CORAL GABLES,FL 33124
关键词
D O I
10.1023/A:1019148510433
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general theorem for establishing the existence of a true periodic orbit near a numerically computed pseudoperiodic orbit of an autonomous system of ordinary differential equations is presented. For practical applications, a Newton method is devised to compute appropriate pseudoperiodic orbits. Then numerical considerations for checking the hypotheses of the theorem in terms of quantities which can be computed directly from the pseudoperiodic orbit and the vector field are addressed. Finally, a numerical method for estimating the Lyapunov exponents of the true periodic orbit is given. The theory and computations are designed to be applicable for unstable periodic orbits with long periods. The existence of several such periodic orbits of the Lorenz equations is exhibited.
引用
收藏
页码:55 / 78
页数:24
相关论文
共 17 条
[1]  
Adams E., 1993, Scientific computing with automatic result verification, P423
[2]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[3]  
Coomes B., 1996, 6 LECT DYNAMICAL SYS, P163
[4]   RIGOROUS COMPUTATIONAL SHADOWING OF ORBITS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
COOMES, BA ;
KOCAK, H ;
PALMER, KJ .
NUMERISCHE MATHEMATIK, 1995, 69 (04) :401-421
[5]  
CURRY JH, 1979, LECT NOTES MATH, V819, P111
[6]   THE STUDY OF PERIODIC-ORBITS OF DYNAMICAL-SYSTEMS - THE USE OF A COMPUTER [J].
DEGREGORIO, S .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) :947-972
[7]   COMPUTATION OF PERIODIC-SOLUTIONS OF NONLINEAR ODES [J].
DEUFLHARD, P .
BIT, 1984, 24 (04) :456-466
[8]   CHARACTERIZATION OF THE LORENZ ATTRACTOR BY UNSTABLE PERIODIC-ORBITS [J].
FRANCESCHINI, V ;
GIBERTI, C ;
ZHENG, ZM .
NONLINEARITY, 1993, 6 (02) :251-258
[9]  
GHRIST RW, 1996, ODE WHOSE SOLUTIONS
[10]  
Guckenheimer John, 1979, Inst. Hautes Etudes Sci. Publ. Math., V50, P59, DOI [10.1007/BF02684769, DOI 10.1007/BF02684769]