A SPICE-Compatible Model of MOS-Type Graphene Nano-Ribbon Field-Effect Transistors Enabling Gate-and Circuit-Level Delay and Power Analysis Under Process Variation

被引:56
作者
Chen, Ying-Yu [1 ]
Sangai, Amit [1 ]
Rogachev, Artem [1 ]
Gholipour, Morteza [2 ]
Iannaccone, Giuseppe [3 ]
Fiori, Gianluca [3 ]
Chen, Deming [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Tehran, Sch Elect & Comp Engn, Adv VLSI Lab, Tehran 14174, Iran
[3] Univ Pisa, Dipartimento Ingn Informaz, I-56126 Pisa, Italy
关键词
Graphene; graphene nano-ribbon; GNRFET; transistor; SPICE; model; CARBON-NANOTUBE; INCLUDING NONIDEALITIES; TECHNOLOGY; SIMULATION; CONTACTS;
D O I
10.1109/TNANO.2015.2469647
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the first parameterized SPICE-compatible compact model of a graphene nano-ribbon field-effect transistor (GNRFET) with doped reservoirs, also known as MOS-type GNRFET. The current and charge models closely match numerical TCAD simulations. In addition, process variation in transistor dimension, line edge roughness, and doping level in the reservoirs are accurately modeled. Our model provides a means to analyze delay and power of graphene-based circuits under process variation, and offers design and fabrication insights for graphene circuits in the future. We show that line edge roughness severely degrades the advantages of GNRFET circuits; however, GNRFET is still a good candidate for low-power applications.
引用
收藏
页码:1068 / 1082
页数:15
相关论文
共 37 条
[1]  
[Anonymous], P SPIE
[2]  
[Anonymous], P INT SEM DEV RES S
[3]  
[Anonymous], 2013, Predictive technology model (ptm)
[4]   Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering [J].
Betti, A. ;
Fiori, G. ;
Iannaccone, G. .
APPLIED PHYSICS LETTERS, 2011, 98 (21)
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   Band Gap Engineering in Zigzag Graphene Nanoribbons-An Ab Initio Approach [J].
Chauhan, Satyendra Singh ;
Srivastava, Pankaj ;
Shrivastava, Ashwani Kumar .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (08) :1084-1089
[7]  
Chen D., 2010, CARBON NANOMATERIALS
[8]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[9]  
Choudhury M, 2008, DES AUT CON, P272
[10]   Pionics: the emerging science and technology of graphene-based nanoelectronics [J].
de Heer, Walt A. ;
Berger, Claire ;
Conrad, Ed ;
First, Phillip ;
Murali, Raghunath ;
Meindl, James .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :199-+