Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data

被引:7
作者
Chen, Yu [1 ]
Zhang, Shuqin [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词
cell type annotation; marker genes; scRNA-seq; SEQ DATA;
D O I
10.3390/biom12101539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advancement in single-cell RNA sequencing (scRNA-seq) technology is gaining more and more attention. Cell type annotation plays an essential role in scRNA-seq data analysis. Several computational methods have been proposed for automatic annotation. Traditional cell type annotation is to first cluster the cells using unsupervised learning methods based on the gene expression profiles, then to label the clusters using the aggregated cluster-level expression profiles and the marker genes' information. Such procedure relies heavily on the clustering results. As the purity of clusters cannot be guaranteed, false detection of cluster features may lead to wrong annotations. In this paper, we improve this procedure and propose an Automatic Cell type Annotation Method (ACAM). ACAM delineates a clear framework to conduct automatic cell annotation through representative cluster identification, representative cluster annotation using marker genes, and the remaining cells' classification. Experiments on seven real datasets show the better performance of ACAM compared to six well-known cell type annotation methods.
引用
收藏
页数:13
相关论文
共 48 条
[1]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[3]  
Biosciences BD, MARKER HDB
[4]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   MARS: discovering novel cell types across heterogeneous single-cell experiments [J].
Brbic, Maria ;
Zitnik, Marinka ;
Wang, Sheng ;
Pisco, Angela O. ;
Altman, Russ B. ;
Darmanis, Spyros ;
Leskovec, Jure .
NATURE METHODS, 2020, 17 (12) :1200-+
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data [J].
Cao, Yinghao ;
Wang, Xiaoyue ;
Peng, Gongxin .
FRONTIERS IN GENETICS, 2020, 11
[8]   Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq [J].
Chen, Lihe ;
Lee, Jae Wook ;
Chou, Chung-Lin ;
Nair, Anil V. ;
Battistone, Maria A. ;
Paunescu, Teodor G. ;
Merkulova, Maria ;
Breton, Sylvie ;
Verlander, Jill W. ;
Wall, Susan M. ;
Brown, Dennis ;
Burg, Maurice B. ;
Knepper, Mark A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (46) :E9989-E9998
[9]  
Chen T., 2015, R PACKAGE VERSION 04, V1, P1
[10]   CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing [J].
de Kanter, Jurrian K. ;
Lijnzaad, Philip ;
Candelli, Tito ;
Margaritis, Thanasis ;
Holstege, Frank C. P. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (16)