Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics

被引:106
作者
Ji, Guangchen [1 ]
Neugebauer, Volker [1 ]
机构
[1] Univ Texas Med Branch, Dept Neurosci & Cell Biol, Galveston, TX 77555 USA
关键词
Optogenetics; Medial prefrontal cortex; Infralimbic; Prelimbic; Pyramidal cells; Single-unit recording; Electrophysiology; Cognitive; Emotion; FEAR EXTINCTION; COGNITIVE INFLEXIBILITY; BASOLATERAL AMYGDALA; CONDITIONED FEAR; FEEDFORWARD INHIBITION; NEURONAL CIRCUITS; ANIMAL-MODELS; CORTEX; PAIN; MECHANISMS;
D O I
10.1186/1756-6606-5-36
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell-and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. Results: Extracellular single-unit recordings were made from infralimbic (IL) pyramidal cells, IL interneurons and prelimbic (PL) pyramidal cells 2-3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2) under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R)-EYFP) or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP). Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. Conclusions: The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region-and cell type-specific manner, which is significant in conditions of impaired mPFC output.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Optetrode: a multichannel readout for optogenetic control in freely moving mice [J].
Anikeeva, Polina ;
Andalman, Aaron S. ;
Witten, Ilana ;
Warden, Melissa ;
Goshen, Inbal ;
Grosenick, Logan ;
Gunaydin, Lisa A. ;
Frank, Loren M. ;
Deisseroth, Karl .
NATURE NEUROSCIENCE, 2012, 15 (01) :163-U204
[2]   Towards a theory of chronic pain [J].
Apkarian, A. Vania ;
Baliki, Marwan N. ;
Geha, Paul Y. .
PROGRESS IN NEUROBIOLOGY, 2009, 87 (02) :81-97
[3]   Human brain mechanisms of pain perception and regulation in health and disease [J].
Apkarian, AV ;
Bushnell, MC ;
Treede, RD ;
Zubieta, JK .
EUROPEAN JOURNAL OF PAIN, 2005, 9 (04) :463-484
[4]   Chronic back pain is associated with decreased prefrontal and thalamic gray matter density [J].
Apkarian, AV ;
Sosa, Y ;
Sonty, S ;
Levy, RM ;
Harden, RN ;
Parrish, TB ;
Gitelman, DR .
JOURNAL OF NEUROSCIENCE, 2004, 24 (46) :10410-10415
[5]   Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli [J].
Bishop, S ;
Duncan, J ;
Lawrence, AD .
NATURE NEUROSCIENCE, 2004, 7 (02) :184-188
[6]  
Bowie Christopher R, 2006, Neuropsychiatr Dis Treat, V2, P531, DOI 10.2147/nedt.2006.2.4.531
[7]   Sustained Conditioned Responses in Prelimbic Prefrontal Neurons Are Correlated with Fear Expression and Extinction Failure [J].
Burgos-Robles, Anthony ;
Vidal-Gonzalez, Ivan ;
Quirk, Gregory J. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (26) :8474-8482
[8]   Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats [J].
Chang, Chun-hui ;
Berke, Joshua D. ;
Maren, Stephen .
PLOS ONE, 2010, 5 (08)
[9]   Strain Difference in the Effect of Infra limbic Cortex Lesions on Fear Extinction in Rats [J].
Chang, Chun-hui ;
Maren, Stephen .
BEHAVIORAL NEUROSCIENCE, 2010, 124 (03) :391-397
[10]   Animal Models of Prefrontal-Executive Function [J].
Chudasama, Yogita .
BEHAVIORAL NEUROSCIENCE, 2011, 125 (03) :327-343