Growth on Meromorphic Solutions of Non-linear Delay Differential Equations

被引:6
作者
Hu, Pei-Chu [1 ]
Wang, Qiong-Yan [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
关键词
Delay differential equation; Hyper-order; Meromorphic solution; Nevanlinna theory;
D O I
10.36045/bbms/1553047233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using Nevanlinna theory and linear algebra, we show that the number one is a lower bound of the hyper-order of any meromorphic solution of a non-linear delay differential equation under certain conditions.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 1933, J. Math
[2]   ON THE GROWTH OF MEROMORPHIC SOLUTIONS OF THE DIFFERENTIAL-EQUATION (Y')M=R(Z,Y) [J].
BANK, SB ;
KAUFMAN, RP .
ACTA MATHEMATICA, 1980, 144 (3-4) :223-248
[3]  
Bellman R., 1963, Differential-Difference Equations
[4]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[5]   Exact Meromorphic Stationary Solutions of the Real Cubic Swift-Hohenberg Equation [J].
Conte, Robert ;
Ng, Tuen-Wai ;
Wong, Kwok-Kin .
STUDIES IN APPLIED MATHEMATICS, 2012, 129 (01) :117-131
[6]  
Driver RD, 1977, APPLMATH SCI
[7]  
Eremenko A., 2006, J. Math. Phys. Anal. Geom., V2, P278
[8]  
Gopalsamy K., 2010, STABILITY OSCILLATIO
[9]   Finite-order meromorphic solutions and the discrete Painleve equations [J].
Halburd, R. G. ;
Korhonen, R. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :443-474
[10]   Generalized Vandermonde determinants [J].
Heineman, E. R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) :464-476