Einstein viscosity with fluid elasticity

被引:40
作者
Einarsson, Jonas [1 ]
Yang, Mengfei [1 ]
Shaqfeh, Eric S. G. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
NON-COLLOIDAL SUSPENSIONS; DILUTE SUSPENSION; 2ND-ORDER FLUID; RIGID SPHERES; MOLECULAR DIMENSIONS; VISCOELASTIC MATRIX; RHEOLOGY; SHEAR; PARTICLES; STRESS;
D O I
10.1103/PhysRevFluids.3.013301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O(phi Wi(2)) in the particle volume fraction phi and the Weissenberg number Wi = gamma lambda, where gamma is the typical magnitude of the suspension velocity gradient, and. is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain "hot spots" near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O(phi Wi), and find dramatic strain-rate thickening at O(phi Wi(2)). We validate our theory with fully resolved numerical simulations.
引用
收藏
页数:15
相关论文
共 28 条
[1]   STRESS SYSTEM IN A SUSPENSION OF FORCE-FREE PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1970, 41 :545-+
[2]   A GENERAL CLASSIFICATION OF 3-DIMENSIONAL FLOW-FIELDS [J].
CHONG, MS ;
PERRY, AE ;
CANTWELL, BJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (05) :765-777
[3]   Viscometric functions of concentrated non-colloidal suspensions of spheres in a viscoelastic matrix [J].
Dai, Shao-Cong ;
Qi, Fuzhong ;
Tanner, Roger I. .
JOURNAL OF RHEOLOGY, 2014, 58 (01) :183-198
[4]   Elongational flows of some non-colloidal suspensions [J].
Dai, Shaocong ;
Tanner, Roger I. .
RHEOLOGICA ACTA, 2017, 56 (01) :63-71
[5]  
Einarsson J., ARXIV170805788
[6]   Spherical particle sedimenting in weakly viscoelastic shear flow [J].
Einarsson, Jonas ;
Mehlig, Bernhard .
PHYSICAL REVIEW FLUIDS, 2017, 2 (06)
[7]   A new determination of the molecular dimensions (vol 19, pg 289, 1906) [J].
Einstein, A .
ANNALEN DER PHYSIK, 1911, 34 (03) :591-592
[8]   A new determination of the molecular dimensions [J].
Einstein, A .
ANNALEN DER PHYSIK, 1906, 19 (02) :289-306
[9]   Stress tensor of a dilute suspension of spheres in a viscoelastic liquid [J].
Greco, F ;
D'Avino, G ;
Maffettone, PL .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[10]   Rheology of a dilute suspension of rigid spheres in a second order fluid [J].
Greco, F. ;
D'Avino, G. ;
Maffettone, P. L. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 147 (1-2) :1-10