Tools for Label-free Peptide Quantification

被引:173
作者
Nahnsen, Sven [4 ]
Bielow, Chris [3 ]
Reinert, Knut [3 ]
Kohlbacher, Oliver [1 ,2 ]
机构
[1] Univ Tubingen, Ctr Bioinformat, Quantitat Biol Ctr, D-72076 Tubingen, Germany
[2] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
[3] Free Univ Berlin, Inst Comp Sci, D-14195 Berlin, Germany
[4] Univ Tubingen, Quantitat Biol Ctr, D-72076 Tubingen, Germany
关键词
SPECTROMETRY-BASED PROTEOMICS; COMPLEX PROTEIN MIXTURES; OPEN-SOURCE SOFTWARE; MASS-SPECTROMETRY; LC-MS; LIQUID-CHROMATOGRAPHY; QUANTITATIVE-ANALYSIS; ABSOLUTE PROTEIN; ALIGNMENT; FRAMEWORK;
D O I
10.1074/mcp.R112.025163
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The increasing scale and complexity of quantitative proteomics studies complicate subsequent analysis of the acquired data. Untargeted label-free quantification, based either on feature intensities or on spectral counting, is a method that scales particularly well with respect to the number of samples. It is thus an excellent alternative to labeling techniques. In order to profit from this scalability, however, data analysis has to cope with large amounts of data, process them automatically, and do a thorough statistical analysis in order to achieve reliable results. We review the state of the art with respect to computational tools for label-free quantification in untargeted proteomics. The two fundamental approaches are feature-based quantification, relying on the summed-up mass spectrometric intensity of peptides, and spectral counting, which relies on the number of MS/MS spectra acquired for a certain protein. We review the current algorithmic approaches underlying some widely used software packages and briefly discuss the statistical strategies for analyzing the data. Molecular & Cellular Proteomics 12: 10.1074/mcp.R112.025163, 549-556, 2013.
引用
收藏
页码:549 / 556
页数:8
相关论文
共 61 条
  • [11] Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes
    Cox, Brian
    Kislinger, Thomas
    Wigle, Dennis A.
    Kannan, Anitha
    Brown, Kevin
    Okubo, Tadashi
    Hogan, Brigid
    Jurisica, Igor
    Frey, Brendan
    Rossant, Janet
    Emili, Andrew
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
  • [12] Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology
    Cox, Juergen
    Mann, Matthias
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 80, 2011, 80 : 273 - 299
  • [13] MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    Cox, Juergen
    Mann, Matthias
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (12) : 1367 - 1372
  • [14] The Proteomic Profile of Circulating Pentraxin 3 (PTX3) Complex in Sepsis Demonstrates the Interaction with Azurocidin 1 and Other Components of Neutrophil Extracellular Traps
    Daigo, Kenji
    Yamaguchi, Naotaka
    Kawamura, Takeshi
    Matsubara, Koichi
    Jiang, Shuying
    Ohashi, Riuko
    Sudou, Yukio
    Kodama, Tatsuhiko
    Naito, Makoto
    Inoue, Kenji
    Hamakubo, Takao
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
  • [15] Applying mass spectrometry-based proteomics to genetics, genomics and network biology
    Gstaiger, Matthias
    Aebersold, Ruedi
    [J]. NATURE REVIEWS GENETICS, 2009, 10 (09) : 617 - 627
  • [16] A Protein Complex Network of Drosophila melanogaster
    Guruharsha, K. G.
    Rual, Jean-Francois
    Zhai, Bo
    Mintseris, Julian
    Vaidya, Pujita
    Vaidya, Namita
    Beekman, Chapman
    Wong, Christina
    Rhee, David Y.
    Cenaj, Odise
    McKillip, Emily
    Shah, Saumini
    Stapleton, Mark
    Wan, Kenneth H.
    Yu, Charles
    Parsa, Bayan
    Carlson, Joseph W.
    Chen, Xiao
    Kapadia, Bhaveen
    VijayRaghavan, K.
    Gygi, Steven P.
    Celniker, Susan E.
    Obar, Robert A.
    Artavanis-Tsakonas, Spyros
    [J]. CELL, 2011, 147 (03) : 690 - 703
  • [17] Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
    Gygi, SP
    Rist, B
    Gerber, SA
    Turecek, F
    Gelb, MH
    Aebersold, R
    [J]. NATURE BIOTECHNOLOGY, 1999, 17 (10) : 994 - 999
  • [18] Hoekman B., 2012, MOL CELL PROTEOMICS
  • [19] A Serum Protein Profile Predictive of the Resistance to Neoadjuvant Chemotherapy in Advanced Breast Cancers
    Hyung, Seok-Won
    Lee, Min Young
    Yu, Jong-Han
    Shin, Byunghee
    Jung, Hee-Jung
    Park, Jong-Moon
    Han, Wonshik
    Lee, Kyung-Min
    Moon, Hyeong-Gon
    Zhang, Hui
    Aebersold, Ruedi
    Hwang, Daehee
    Lee, Sang-Won
    Yu, Myeong-Hee
    Noh, Dong-Young
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (10)
  • [20] Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein
    Ishihama, Y
    Oda, Y
    Tabata, T
    Sato, T
    Nagasu, T
    Rappsilber, J
    Mann, M
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (09) : 1265 - 1272