Tools for Label-free Peptide Quantification

被引:172
作者
Nahnsen, Sven [4 ]
Bielow, Chris [3 ]
Reinert, Knut [3 ]
Kohlbacher, Oliver [1 ,2 ]
机构
[1] Univ Tubingen, Ctr Bioinformat, Quantitat Biol Ctr, D-72076 Tubingen, Germany
[2] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
[3] Free Univ Berlin, Inst Comp Sci, D-14195 Berlin, Germany
[4] Univ Tubingen, Quantitat Biol Ctr, D-72076 Tubingen, Germany
关键词
SPECTROMETRY-BASED PROTEOMICS; COMPLEX PROTEIN MIXTURES; OPEN-SOURCE SOFTWARE; MASS-SPECTROMETRY; LC-MS; LIQUID-CHROMATOGRAPHY; QUANTITATIVE-ANALYSIS; ABSOLUTE PROTEIN; ALIGNMENT; FRAMEWORK;
D O I
10.1074/mcp.R112.025163
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The increasing scale and complexity of quantitative proteomics studies complicate subsequent analysis of the acquired data. Untargeted label-free quantification, based either on feature intensities or on spectral counting, is a method that scales particularly well with respect to the number of samples. It is thus an excellent alternative to labeling techniques. In order to profit from this scalability, however, data analysis has to cope with large amounts of data, process them automatically, and do a thorough statistical analysis in order to achieve reliable results. We review the state of the art with respect to computational tools for label-free quantification in untargeted proteomics. The two fundamental approaches are feature-based quantification, relying on the summed-up mass spectrometric intensity of peptides, and spectral counting, which relies on the number of MS/MS spectra acquired for a certain protein. We review the current algorithmic approaches underlying some widely used software packages and briefly discuss the statistical strategies for analyzing the data. Molecular & Cellular Proteomics 12: 10.1074/mcp.R112.025163, 549-556, 2013.
引用
收藏
页码:549 / 556
页数:8
相关论文
共 61 条
  • [1] Mass spectrometry-based proteomics
    Aebersold, R
    Mann, M
    [J]. NATURE, 2003, 422 (6928) : 198 - 207
  • [2] Comparative LC-MS: A landscape of peaks and valleys
    America, Antoine H. P.
    Cordewener, Jan H. G.
    [J]. PROTEOMICS, 2008, 8 (04) : 731 - 749
  • [3] MassUntangler: A novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data
    Ballardini, R.
    Benevento, M.
    Arrigoni, G.
    Pattini, L.
    Roda, A.
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2011, 1218 (49) : 8859 - 8868
  • [4] Quantitative mass spectrometry in proteomics: a critical review
    Bantscheff, Marcus
    Schirle, Markus
    Sweetman, Gavain
    Rick, Jens
    Kuster, Bernhard
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) : 1017 - 1031
  • [5] Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors
    Bantscheff, Marcus
    Eberhard, Dirk
    Abraham, Yann
    Bastuck, Sonja
    Boesche, Markus
    Hobson, Scott
    Mathieson, Toby
    Perrin, Jessica
    Raida, Manfred
    Rau, Christina
    Reader, Valerie
    Sweetman, Gavain
    Bauer, Andreas
    Bouwmeester, Tewis
    Hopf, Carsten
    Kruse, Ulrich
    Neubauer, Gitte
    Ramsden, Nigel
    Rick, Jens
    Kuster, Bernhard
    Drewes, Gerard
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (09) : 1035 - 1044
  • [6] The quantitative proteome of a human cell line
    Beck, Martin
    Schmidt, Alexander
    Malmstroem, Johan
    Claassen, Manfred
    Ori, Alessandro
    Szymborska, Anna
    Herzog, Franz
    Rinner, Oliver
    Ellenberg, Jan
    Aebersold, Ruedi
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7
  • [7] A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
    Bellew, Matthew
    Coram, Marc
    Fitzgibbon, Matthew
    Igra, Mark
    Randolph, Tim
    Wang, Pei
    May, Damon
    Eng, Jimmy
    Fang, Ruihua
    Lin, ChenWei
    Chen, Jinzhi
    Goodlett, David
    Whiteaker, Jeffrey
    Paulovich, Amanda
    McIntosh, Martin
    [J]. BIOINFORMATICS, 2006, 22 (15) : 1902 - 1909
  • [8] Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics
    Brusniak, Mi-Youn
    Bodenmiller, Bernd
    Campbell, David
    Cooke, Kelly
    Eddes, James
    Garbutt, Andrew
    Lau, Hollis
    Letarte, Simon
    Mueller, Lukas N.
    Sharma, Vagisha
    Vitek, Olga
    Zhang, Ning
    Aebersold, Ruedi
    Watts, Julian D.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [9] Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
    Callister, SJ
    Barry, RC
    Adkins, JN
    Johnson, ET
    Qian, WJ
    Webb-Robertson, BJM
    Smith, RD
    Lipton, MS
    [J]. JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) : 277 - 286
  • [10] Colaert N., 2011, J PROTEOME RES