Improving spanning trees by upgrading nodes

被引:13
作者
Krumke, SO
Noltemeier, H
Wirth, HC
Marathe, MV
Ravi, R
Ravi, SS
Sundaram, R
机构
[1] Konrad Zuse Zentrum Informat Tech Berlin ZIB, D-14195 Berlin, Germany
[2] Univ Wurzburg, Dept Comp Sci, D-97074 Wurzburg, Germany
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
[5] SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
[6] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
NP-hardness; approximation algorithms; network design; spanning tree;
D O I
10.1016/S0304-3975(99)00030-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study bottleneck constrained network upgrading problems. We are given an edge weighted graph G = (V, E) where node upsilon is an element of V can be upgraded at a cost of c(upsilon), This upgrade reduces the delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has good performance. The performance is measured by the bottleneck weight of a minimum spanning tree. We give a polynomial time approximation algorithm with logarithmic performance guarantee, which is tight within a small constant factor as shown by our hardness results. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 13 条
[1]   AN ALGEBRAIC-THEORY OF GRAPH REDUCTION [J].
ARNBORG, S ;
COURCELLE, B ;
PROSKUROWSKI, A ;
SEESE, D .
JOURNAL OF THE ACM, 1993, 40 (05) :1134-1164
[2]  
Berman O., 1992, Annals of Operations Research, V40, P1, DOI 10.1007/BF02060467
[3]   LINEAR-TIME COMPUTATION OF OPTIMAL SUBGRAPHS OF DECOMPOSABLE GRAPHS [J].
BERN, MW ;
LAWLER, EL ;
WONG, AL .
JOURNAL OF ALGORITHMS, 1987, 8 (02) :216-235
[4]  
Feige U., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P314, DOI 10.1145/237814.237977
[5]   Edge weight reduction problems in directed acyclic graphs [J].
Hambrusch, SE ;
Tu, HY .
JOURNAL OF ALGORITHMS, 1997, 24 (01) :66-93
[6]  
LEIGHTON FT, 1988, P 29 ANN IEEE S FDN, P422
[7]   NETWORK UPGRADING PROBLEMS [J].
PAIK, D ;
SAHNI, S .
NETWORKS, 1995, 26 (01) :45-58
[8]   GRAPH MINORS .4. TREE-WIDTH AND WELL-QUASI-ORDERING [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (02) :227-254
[9]   THE RECOGNITION OF SERIES-PARALLEL DIGRAPHS [J].
VALDES, J ;
TARJAN, RE ;
LAWLER, EL .
SIAM JOURNAL ON COMPUTING, 1982, 11 (02) :298-313
[10]  
[No title captured]