Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing

被引:134
作者
Melet, Angelique [1 ]
Hallberg, Robert [2 ]
Legg, Sonya [1 ]
Polzin, Kurt [3 ]
机构
[1] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[3] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
DEEP-OCEAN; SPATIAL-DISTRIBUTION; GENERAL-CIRCULATION; ROUGH TOPOGRAPHY; CLIMATE MODELS; ABYSSAL OCEAN; Z-COORDINATE; ENERGY FLUX; PART I; DISSIPATION;
D O I
10.1175/JPO-D-12-055.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottomwith a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel-Kramers-Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean-ice-atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
引用
收藏
页码:602 / 615
页数:14
相关论文
共 61 条
[1]   Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux [J].
Alford, Matthew H. ;
Zhao, Zhongxiang .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (07) :1829-1848
[2]   Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges [J].
Alford, Matthew H. ;
MacKinnon, Jennifer A. ;
Nash, Jonathan D. ;
Simmons, Harper ;
Pickering, Andy ;
Klymak, Jody M. ;
Pinkel, Robert ;
Sun, Oliver ;
Rainville, Luc ;
Musgrave, Ruth ;
Beitzel, Tamara ;
Fu, Ke-Hsien ;
Lu, Chung-Wei .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2011, 41 (11) :2211-2222
[3]  
Alford MH, 2000, J PHYS OCEANOGR, V30, P805, DOI 10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO
[4]  
2
[5]   Redistribution of energy available for ocean mixing by long-range propagation of internal waves [J].
Alford, MH .
NATURE, 2003, 423 (6936) :159-162
[6]  
Alford MH, 2001, J PHYS OCEANOGR, V31, P2359, DOI 10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO
[7]  
2
[8]   LEE WAVES IN STRATIFIED FLOWS WITH SIMPLE HARMONIC TIME-DEPENDENCE [J].
BELL, TH .
JOURNAL OF FLUID MECHANICS, 1975, 67 (FEB25) :705-722
[9]   Global tidal residual mean circulation:: Does it affect a climate OGCM? [J].
Bessieres, Laurent ;
Madec, Gurvan ;
Lyard, Florent .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (03)
[10]   WATER MASS MODEL OF THE WORLD OCEAN [J].
BRYAN, K ;
LEWIS, LJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1979, 84 (NC5) :2503-2517