Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture

被引:410
|
作者
Mauck, RL [1 ]
Yuan, X [1 ]
Tuan, RS [1 ]
机构
[1] NIAMSD, Cartilage Biol & Orthopaed Branch, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA
关键词
mesenchymal stem cells; agarose; mechanical properties; chondrogenesis; chondrocyte; cartilage;
D O I
10.1016/j.joca.2005.09.002
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background. The developmental history of the chondrocyte results in a cell whose biosynthetic activities are optimized to maintain the concentration and organization of a mechanically functional cartilaginous extracellular matrix. While useful for cartilage tissue engineering studies, the limited supply of healthy autologous chondrocytes may preclude their clinical use. Consequently, multipotential mesenchymal stem cells (MSCs) have been proposed as an alternative cell source. Objective: While MSCs undergo chondrogenesis, few studies have assessed the mechanical integrity of their forming matrix. Furthermore, efficiency of matrix formation must be determined in comparison to healthy chondrocytes from the same donor. Given the scarcity of healthy human tissue, this study determined the feasibility of isolating bovine chondrocytes and MSCs, and examined their long-term maturation in three-dimensional agarose culture. Experimental design: Bovine MSCs were seeded in agarose and induced to undergo chondrogenesis. Mechanical and biochemical properties of MSC-laden constructs were monitored over a 10-week period and compared to those of chondrocytes derived from the same group of animals maintained similarly. Results: Our results show that while chondrogenesis does occur in MSC-laden hydrogels, the amount of the forming matrix and measures of its mechanical properties are lower than that produced by chondrocytes under the same conditions. Furthermore, some important properties, particularly glycosaminoglycan content and equilibrium modulus, plateau with time in MSC-laden constructs, suggesting that diminished capacity is not the result of delayed differentiation. Conclusions: These findings suggest that while MSCs do generate constructs with substantial cartilaginous properties, further optimization must be done to achieve levels similar to those produced by chondrocytes. Published by Elsevier Ltd on behalf of OsteoArthritis Research Society International.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 50 条
  • [21] Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture
    Lu, Tsai-Jung
    Chiu, Fang-Yao
    Chiu, Hsiao-Ying
    Chang, Ming-Chau
    Hung, Shih-Chieh
    CELL TRANSPLANTATION, 2017, 26 (03) : 417 - 427
  • [22] Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices
    Moeinzadeh, Seyedsina
    Monavarian, Mehri
    Kader, Safaa
    Jabbari, Esmaiel
    TISSUE ENGINEERING PART A, 2019, 25 (3-4) : 234 - 247
  • [23] The effect of beta-xylosides on the chondrogenic differentiation of mesenchymal stem cells
    Siyuan Li
    Anthony J. Hayes
    Bruce Caterson
    Clare E. Hughes
    Histochemistry and Cell Biology, 2013, 139 : 59 - 74
  • [24] Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells
    Varghese, Shyni
    Hwang, Nathaniel S.
    Canver, Adam C.
    Theprungsirikul, Parnduangji
    Lin, Debora W.
    Elisseeff, Jennifer
    MATRIX BIOLOGY, 2008, 27 (01) : 12 - 21
  • [25] Isolation and Characterization of Human Amniotic Mesenchymal Stem Cells and Their Chondrogenic Differentiation
    Nogami, Makiko
    Tsuno, Hiroaki
    Koike, Chika
    Okabe, Motonori
    Yoshida, Toshiko
    Seki, Shoji
    Matsui, Yoshito
    Kimura, Tomoatsu
    Nikaido, Toshio
    TRANSPLANTATION, 2012, 93 (12) : 1221 - 1228
  • [26] The effect of beta-xylosides on the chondrogenic differentiation of mesenchymal stem cells
    Li, Siyuan
    Hayes, Anthony J.
    Caterson, Bruce
    Hughes, Clare E.
    HISTOCHEMISTRY AND CELL BIOLOGY, 2013, 139 (01) : 59 - 74
  • [27] Growth Factors and Signaling Pathways in the Chondrogenic Differentiation of Mesenchymal Stem Cells
    Shanmugarajan, T. S.
    Kim, Byung-Soo
    Lee, Haeshin
    Im, Gun-Il
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 8 (03) : 292 - 299
  • [28] Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells
    Xiaohui Yang
    Shifeng Tian
    Linlin Fan
    Rui Niu
    Man Yan
    Shuo Chen
    Minying Zheng
    Shiwu Zhang
    Cancer Cell International, 22
  • [29] Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells
    Yang, Xiaohui
    Tian, Shifeng
    Fan, Linlin
    Niu, Rui
    Yan, Man
    Chen, Shuo
    Zheng, Minying
    Zhang, Shiwu
    CANCER CELL INTERNATIONAL, 2022, 22 (01)
  • [30] Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system
    Bosnakovski, D
    Mizuno, M
    Kim, G
    Takagi, S
    Okumura, M
    Fujinaga, T
    JAPANESE JOURNAL OF VETERINARY RESEARCH, 2006, 53 (3-4) : 127 - 139