An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data

被引:1264
作者
Satterthwaite, Theodore D. [1 ]
Elliott, Mark A. [2 ]
Gerraty, Raphael T. [1 ]
Ruparel, Kosha [1 ]
Loughead, James [1 ]
Calkins, Monica E. [1 ]
Eickhoff, Simon B. [4 ,5 ,6 ]
Hakonarson, Hakon [7 ]
Gur, Ruben C. [1 ,2 ,3 ]
Gur, Raquel E. [1 ,2 ]
Wolf, Daniel H. [1 ]
机构
[1] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Philadelphia Vet Adm Med Ctr, Philadelphia, PA 19104 USA
[4] Rhein Westfal TH Aachen, Dept Psychiat & Psychotherapy, Aachen, Germany
[5] Univ Dusseldorf, Inst Clin Neurosci & Med Psychol, D-40225 Dusseldorf, Germany
[6] Res Ctr Julich, Inst Neurosci & Med INM 2, Julich, Germany
[7] Childrens Hosp Philadelphia, Ctr Appl Genom, Philadelphia, PA 19104 USA
关键词
Motion; Artifact; fMRI; Connectivity; Development; Adolescence; Network; Connectome; Resting-state; PHYSIOLOGICAL NOISE CORRECTION; FMRI TIME-SERIES; HUMAN BRAIN; CEREBRAL-CORTEX; GLOBAL SIGNAL; NETWORKS; FLUCTUATIONS; OPTIMIZATION; MODEL; ANTICORRELATIONS;
D O I
10.1016/j.neuroimage.2012.08.052
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 256
页数:17
相关论文
共 50 条
  • [21] Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis
    Lee, Young-Beom
    Lee, Jeonghyeon
    Tak, Sungho
    Lee, Kangjoo
    Na, Duk L.
    Seo, Sang Won
    Jeong, Yong
    Ye, Jong Chul
    NEUROIMAGE, 2016, 125 : 1032 - 1045
  • [22] RESTING-STATE FEATURES OF THE BRAIN FUNCTIONAL CONNECTIVITY IN PATIENTS WITH LATERALIZED TEMPORAL MEDIOBASAL LESIONS (FMRI AND EEG DATA)
    Kuleva, A. Yu
    Sharova, E., V
    Boldyreva, G. N.
    Strunina, Yu, V
    Yarets, M. Yu
    Galkin, M., V
    Bychkova, A. S.
    Smirnov, A. S.
    Krotkova, O. A.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2022, 72 (02) : 187 - 200
  • [23] Resting-state functional connectivity predicts recovery from visually induced motion sickness
    Jungo Miyazaki
    Hiroki Yamamoto
    Yoshikatsu Ichimura
    Hiroyuki Yamashiro
    Tomokazu Murase
    Tetsuya Yamamoto
    Masahiro Umeda
    Toshihiro Higuchi
    Experimental Brain Research, 2021, 239 : 903 - 921
  • [24] Resting-state functional connectivity predicts recovery from visually induced motion sickness
    Miyazaki, Jungo
    Yamamoto, Hiroki
    Ichimura, Yoshikatsu
    Yamashiro, Hiroyuki
    Murase, Tomokazu
    Yamamoto, Tetsuya
    Umeda, Masahiro
    Higuchi, Toshihiro
    EXPERIMENTAL BRAIN RESEARCH, 2021, 239 (03) : 903 - 921
  • [25] Comparing different motion correction approaches for resting-state functional connectivity analysis with functional near-infrared spectroscopy data
    Iester, Costanza
    Bonzano, Laura
    Biggio, Monica
    Cutini, Simone
    Bove, Marco
    Brigadoi, Sabrina
    NEUROPHOTONICS, 2024, 11 (04)
  • [26] Detection of Obsessive Compulsive Disorder Using Resting-State Functional Connectivity Data
    Shenas, Sona Khaneh
    Halici, Ugur
    Cicek, Metehan
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 132 - 136
  • [27] Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
    Pruett, John R., Jr.
    Kandala, Sridhar
    Hoertel, Sarah
    Snyder, Abraham Z.
    Elison, Jed T.
    Nishino, Tomoyuki
    Feczko, Eric
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Power, Jonathan D.
    Adeyemo, Babatunde
    Botteron, Kelly N.
    McKinstry, Robert C.
    Evans, Alan C.
    Hazlett, Heather C.
    Dager, Stephen R.
    Paterson, Sarah
    Schultz, Robert T.
    Collins, D. Louis
    Fonov, Vladimir S.
    Styner, Martin
    Gerig, Guido
    Das, Samir
    Kostopoulos, Penelope
    Constantino, John N.
    Estes, Annette M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    Piven, Joseph
    DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2015, 12 : 123 - 133
  • [28] Resting-State Functional Connectivity and Scholastic Performance in Preadolescent Children: A Data-Driven Multivoxel Pattern Analysis (MVPA)
    Westfall, Daniel R.
    Anteraper, Sheeba A.
    Chaddock-Heyman, Laura
    Drollette, Eric S.
    Raine, Lauren B.
    Whitfield-Gabrieli, Susan
    Kramer, Arthur E.
    Hillman, Charles H.
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (10) : 1 - 13
  • [29] Segregation of Face Sensitive Areas Within the Fusiform Gyrus Using Global Signal Regression? A Study on Amygdala Resting-State Functional Connectivity
    Kruschwitz, Johann D.
    Meyer-Lindenberg, Andreas
    Veer, Ilya M.
    Wackerhagen, Carolin
    Erk, Susanne
    Mohnke, Sebastian
    Poehland, Lydia
    Haddad, Leila
    Grimm, Oliver
    Tost, Heike
    Romanczuk-Seiferth, Nina
    Heinz, Andreas
    Walter, Martin
    Walter, Henrik
    HUMAN BRAIN MAPPING, 2015, 36 (10) : 4089 - 4103
  • [30] A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fMRI data
    Motlaghian, S. M.
    Vahidi, V.
    Belger, A.
    Bustillo, J. R.
    Faghiri, A.
    Ford, J. M.
    Iraji, A.
    Lim, K.
    Mathalon, D. H.
    Miller, R.
    Mueller, B. A.
    O'Leary, D.
    Potkin, S. G.
    Preda, A.
    van Erp, T. G.
    Calhoun, V. D.
    JOURNAL OF NEUROSCIENCE METHODS, 2023, 389