An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data

被引:1264
|
作者
Satterthwaite, Theodore D. [1 ]
Elliott, Mark A. [2 ]
Gerraty, Raphael T. [1 ]
Ruparel, Kosha [1 ]
Loughead, James [1 ]
Calkins, Monica E. [1 ]
Eickhoff, Simon B. [4 ,5 ,6 ]
Hakonarson, Hakon [7 ]
Gur, Ruben C. [1 ,2 ,3 ]
Gur, Raquel E. [1 ,2 ]
Wolf, Daniel H. [1 ]
机构
[1] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Philadelphia Vet Adm Med Ctr, Philadelphia, PA 19104 USA
[4] Rhein Westfal TH Aachen, Dept Psychiat & Psychotherapy, Aachen, Germany
[5] Univ Dusseldorf, Inst Clin Neurosci & Med Psychol, D-40225 Dusseldorf, Germany
[6] Res Ctr Julich, Inst Neurosci & Med INM 2, Julich, Germany
[7] Childrens Hosp Philadelphia, Ctr Appl Genom, Philadelphia, PA 19104 USA
关键词
Motion; Artifact; fMRI; Connectivity; Development; Adolescence; Network; Connectome; Resting-state; PHYSIOLOGICAL NOISE CORRECTION; FMRI TIME-SERIES; HUMAN BRAIN; CEREBRAL-CORTEX; GLOBAL SIGNAL; NETWORKS; FLUCTUATIONS; OPTIMIZATION; MODEL; ANTICORRELATIONS;
D O I
10.1016/j.neuroimage.2012.08.052
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 256
页数:17
相关论文
共 50 条
  • [1] Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity
    Lydon-Staley, David M.
    Ciric, Rastko
    Satterthwaite, Theodore D.
    Bassett, Danielle S.
    NETWORK NEUROSCIENCE, 2019, 3 (02): : 427 - 454
  • [2] Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
    Ciric, Rastko
    Wolf, Daniel H.
    Power, Jonathan D.
    Roalf, David R.
    Baum, Graham L.
    Ruparel, Kosha
    Shinohara, Russell T.
    Elliott, Mark A.
    Eickhoff, Simon B.
    Davatzikos, Christos
    Gur, Ruben C.
    Gur, Raquel E.
    Bassett, Danielle S.
    Satterthwaite, Theodore D.
    NEUROIMAGE, 2017, 154 : 174 - 187
  • [3] Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data
    Mahadevan, Arun S.
    Tooley, Ursula A.
    Bertolero, Maxwell A.
    Mackey, Allyson P.
    Bassett, Danielle S.
    NEUROIMAGE, 2021, 241
  • [4] Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies
    Weissenbacher, Andreas
    Kasess, Christian
    Gerstl, Florian
    Lanzenberger, Rupert
    Moser, Ewald
    Windischberger, Christian
    NEUROIMAGE, 2009, 47 (04) : 1408 - 1416
  • [5] The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity
    Hallquist, Michael N.
    Hwang, Kai
    Luna, Beatriz
    NEUROIMAGE, 2013, 82 : 208 - 225
  • [6] Advancing motion denoising of multiband resting-state functional connectivity fMRI data
    Williams, John C.
    Tubiolo, Philip N.
    Luceno, Jacob R.
    Van Snellenberg, Jared X.
    NEUROIMAGE, 2022, 249
  • [7] Predictors of Attrition in Longitudinal Neuroimaging Research: Inhibitory Control, Head Movement, and Resting-State Functional Connectivity
    Stange, Jonathan P.
    Jenkins, Lisanne M.
    Bessette, Katie L.
    Kling, Leah R.
    Bark, John S.
    Shepard, Robert
    Hamlat, Elissa J.
    DelDonno, Sophie
    Phan, K. Luan
    Passarotti, Alessandra M.
    Ajilore, Olusola
    Langenecker, Scott A.
    BRAIN CONNECTIVITY, 2018, 8 (09) : 527 - 536
  • [8] Systematic evaluation of head motion on resting-state functional connectivity MRI in neonate
    Kim, Jung-Hoon
    De Asis-Cruz, Josepheen
    Kapse, Kushal
    Limperopoulos, Catherine
    HUMAN BRAIN MAPPING, 2023, 44 (05) : 1934 - 1948
  • [9] SINGULAR SPECTRUM ANALYSIS AND ADAPTIVE FILTERING ENHANCE THE FUNCTIONAL CONNECTIVITY ANALYSIS OF RESTING STATE fMRI DATA
    Piaggi, Paolo
    Menicucci, Danilo
    Gentili, Claudio
    Handjaras, Giacomo
    Gemignani, Angelo
    Landi, Alberto
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2014, 24 (03)
  • [10] Global signal regression strengthens association between resting-state functional connectivity and behavior
    Li, Jingwei
    Kong, Ru
    Liegeois, Raphael
    Orban, Csaba
    Tan, Yanrui
    Sun, Nanbo
    Holmes, Avram J.
    Sabuncu, Mert R.
    Ge, Tian
    Yeo, B. T. Thomas
    NEUROIMAGE, 2019, 196 : 126 - 141