Tauberian conditions on some slowly decreasing sequences

被引:1
作者
Erdem, Yilmaz [1 ]
机构
[1] Adnan Menderes Univ, Dept Econ & Finance, TR-09100 Aydin, Turkey
关键词
Abel summability; Cesaro summability; Product method of summability; Slowly decreasing; Tauberian theorems; 40E05; 40G0; 40G10; THEOREMS; SUMMABILITY; (A)(C; BOREL;
D O I
10.1007/s10998-018-0251-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some Tauberian conditions to recover Cesaro summability of a sequence out of the product methods of Abel and Cesaro summability of the sequence. Moreover, we generalize some classical Tauberian theorems, such as the Hardy-Littlewood theorem, the generalized Littlewood theorem for Abel summability method.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 29 条
[1]   ON A CONVERSE OF ABEL THEOREM [J].
AMIR, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (02) :244-256
[2]  
[Anonymous], 1897, MONATSH MATH
[3]  
Armitage D. H., 1990, ANALYSIS, V10, P177
[4]  
Boos J., 2000, Classical and modern methods in summability
[5]  
Borwein D., 1958, Q J MATH OXFORD SER, V9, P310
[6]   An extended Tauberian theorem for the (C, 1) summability method [J].
Canak, Ibrahim .
APPLIED MATHEMATICS LETTERS, 2008, 21 (01) :74-80
[7]   Some Tauberian conditions for Cesaro summability method [J].
Canak, Ibrahim ;
Totur, Umit .
MATHEMATICA SLOVACA, 2012, 62 (02) :271-280
[8]   On Tauberian theorems for (A)(C, α) summability method [J].
Canak, Ibrahim ;
Erdem, Yilmaz .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) :2829-2836
[9]   Some Tauberian theorems for (A) (C, α ) summability method [J].
Canak, Ibrahim ;
Erdem, Yilmaz ;
Totur, Umit .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :738-743
[10]  
Dik M., 2001, MATH MORAV, V5, P57, DOI DOI 10.5937/MATMOR0105057D