Higher regularity of solutions of singular parabolic equations with variable nonlinearity

被引:9
作者
Antontsev, S. [1 ,2 ]
Shmarev, S. [3 ]
机构
[1] Univ Lisbon, CMAF CIO, Lisbon, Portugal
[2] RAS, SB, Lavrentyev Inst Hydrodynam, Novosibirsk, Russia
[3] Univ Oviedo, Dept Math, Oviedo, Spain
基金
俄罗斯科学基金会;
关键词
Nonlinear parabolic equations; singular equations; variable nonlinearity; regularity of solutions; FUNCTIONALS; EXPONENT; P(X;
D O I
10.1080/00036811.2017.1382690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global regularity of solutions of the homogeneous Dirichlet problem for the parabolic equation with variable nonlinearity u(t) - div (vertical bar del u vertical bar(p(x, t)-2)del u - f) = 0 in Q(T) = Omega x (0, T), where p(x, t), f(x, t) are given functions of their arguments, n >= 2 and 2n/n+2 < p(x, t) <= 2. Conditions on the data are found that guarantee the existence of a unique strong solution such that u(t) is an element of L-2(QT) and vertical bar del u vertical bar is an element of L-infinity (0, T; L-p(center dot) (Omega)). It is shown that if partial derivative Omega is an element of C1+beta with beta is an element of (0, 1), p and f are Holder-continuous in <(Omega)over bar> x (0, T], D(i)f(j) is an element of L-2(Q(T)) and vertical bar del p vertical bar is an element of L-infinity (Q(T)), then for every strong solution D(ij)(2)u is an element of L-2(Omega x (s, T)) with any s is an element of (0, T).
引用
收藏
页码:310 / 331
页数:22
相关论文
共 27 条
  • [1] Alkhutov YA., 2011, J Math Sci, V179, P347, DOI [10.1007/s10958-011-0599-9, DOI 10.1007/S10958-011-0599-9]
  • [2] Existence theorems for solutions of parabolic equations with variable order of nonlinearity
    Alkhutov, Yu. A.
    Zhikov, V. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) : 15 - 26
  • [3] [Anonymous], LECT NOTES MATH
  • [4] [Anonymous], LECT NOTES UNIONE MA
  • [5] [Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
  • [6] [Anonymous], 2015, ATLANTIS STUDIES DIF, DOI DOI 10.2991/978-94-6239-112-3
  • [7] ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY
    Antontsev, S.
    Shmarev, S.
    [J]. PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 355 - 399
  • [8] Asymptotic behavior of trembling fluids
    Antontsev, S. N.
    de Oliveira, H. B.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 54 - 66
  • [9] Antontsev S. N., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat, V52, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
  • [10] Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053