Experimental Observation of the Spectral Gap in Microwave n-Disk Systems

被引:34
作者
Barkhofen, S. [1 ]
Weich, T. [1 ,2 ]
Potzuweit, A. [1 ]
Stoeckmann, H-J [1 ]
Kuhl, U. [1 ,3 ]
Zworski, M. [4 ]
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
[3] Univ Nice Sophia Antipolis, CNRS UMR 7336, Phys Mat Condensee Lab, F-06108 Nice, France
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ANALYTIC CONTINUATION; QUANTUM RESONANCES; CHAOTIC CAVITIES; LIMIT SET; SCATTERING; QUANTIZATION; DENSITY; DECAY; BOUNDS;
D O I
10.1103/PhysRevLett.110.164102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry reduced three-disk and five-disk systems are studied in a microwave setup. Using harmonic inversion the distribution of the imaginary parts of the resonances is determined. With increasing opening of the systems, a spectral gap is observed for thick as well as for thin repellers and for the latter case it is compared with the known topological pressure bounds. The maxima of the distributions are found to coincide for a large range of the distance to radius parameter with half of the classical escape rate. This confirms theoretical predictions based on rigorous mathematical analysis for the spectral gap and on numerical experiments for the maxima of the distributions. DOI: 10.1103/PhysRevLett.110.164102
引用
收藏
页数:5
相关论文
共 41 条
  • [1] [Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
  • [2] Borthwick D., 2007, SPECTRAL THEORY INFI, V256
  • [3] Generalization of Selberg's 3/16 theorem and affine sieve
    Bourgain, Jean
    Gamburd, Alex
    Sarnak, Peter
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 255 - 290
  • [4] Bowen R., 1979, Inst. Hautes Etudes Sci. Publ. Math., V50, P11, DOI 10.1007/BF02684767
  • [5] PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS
    CVITANOVIC, P
    ECKHARDT, B
    [J]. PHYSICAL REVIEW LETTERS, 1989, 63 (08) : 823 - 826
  • [6] Datchev K., ARXIV12062255V3
  • [7] Eckhard B., 1995, QUANTUM CHAOS, P405
  • [8] Statistics of Resonance Width Shifts as a Signature of Eigenfunction Nonorthogonality
    Fyodorov, Yan V.
    Savin, Dmitry V.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (18)
  • [9] GASPARD P, 1989, J CHEM PHYS, V90, P2242, DOI 10.1063/1.456018
  • [10] EXACT QUANTIZATION OF THE SCATTERING FROM A CLASSICALLY CHAOTIC REPELLOR
    GASPARD, P
    RICE, SA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (04) : 2255 - 2262