Scaling up the Greedy Equivalence Search algorithm by constraining the search space of equivalence classes
被引:32
|
作者:
Alonso-Barba, Juan I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, SpainUniv Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, Spain
Alonso-Barba, Juan I.
[1
]
delaOssa, Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, SpainUniv Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, Spain
delaOssa, Luis
[1
]
Gamez, Jose A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, SpainUniv Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, Spain
Gamez, Jose A.
[1
]
Puerta, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, SpainUniv Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, Spain
Puerta, Jose M.
[1
]
机构:
[1] Univ Castilla La Mancha, Albacete Res Inst Informat, Intelligent Syst & Data Min Lab, Dept Comp Syst, Albacete 02071, Spain
Greedy Equivalence Search (GES) is nowadays the state of the art algorithm for learning Bayesian networks (BNs) from complete data. However, from a practical point of view, this algorithm may not be efficient enough to deal with data from high dimensionality and/or complex domains. This paper proposes some modifications to GES aimed at increasing its efficiency. Under the faithfulness assumption, the modified algorithms preserve the same theoretical properties of the original one, that is, they recover a perfect map of the target distribution in the large sample limit. Moreover, experimental results confirm that, although the proposed methods carry out a significantly smaller number of computations, the quality of the BNs learned can be compared with those obtained with GES. (C) 2012 Elsevier Inc. All rights reserved.