Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

被引:1
作者
Koekenyesi, Zoltan [1 ]
Sinkovics, Annamaria [1 ]
Szabo, Richard J. [2 ,3 ,4 ]
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
[2] Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[4] Higgs Ctr Theoret Phys, Edinburgh, Midlothian, Scotland
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2016年 / 64卷 / 11-12期
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
REFINED CHERN-SIMONS; BRANCHED-COVERINGS; HECKE ALGEBRAS; MODULI SPACES; WILSON LOOPS; REPRESENTATIONS; STRINGS; QCD;
D O I
10.1002/prop.201600087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new beta-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit beta = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and beta-ensembles of matrix models arising in refined topological string theory.
引用
收藏
页码:823 / 853
页数:31
相关论文
共 54 条
  • [1] Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings
    Aganagic, M
    Ooguri, H
    Saulina, N
    Vafa, C
    [J]. NUCLEAR PHYSICS B, 2005, 715 (1-2) : 304 - 348
  • [2] Aganagic M., 2012, JHEP, V1209
  • [3] Aganagic M., 2013, JHEP, V1301, P060
  • [4] Knot Homology and Refined Chern-Simons Index
    Aganagic, Mina
    Shakirov, Shamil
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 187 - 228
  • [5] [Anonymous], 1975, Sov. Phys. JETP
  • [6] Branched coverings and interacting matrix strings in two dimensions
    Billó, M
    D'Adda, A
    Provero, P
    [J]. NUCLEAR PHYSICS B, 2001, 616 (03) : 495 - 516
  • [7] The uses of the refined matrix model recursion
    Brini, Andrea
    Marino, Marcos
    Stevan, Sebastien
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [8] Bryan J, 2008, J AM MATH SOC, V21, P101
  • [9] Caporaso N., 2006, JHEP, V0601
  • [10] Caporaso N., 2006, JHEP, V0601