Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory
被引:1
作者:
Koekenyesi, Zoltan
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, HungaryEotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
Koekenyesi, Zoltan
[1
]
Sinkovics, Annamaria
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, HungaryEotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
Sinkovics, Annamaria
[1
]
Szabo, Richard J.
论文数: 0引用数: 0
h-index: 0
机构:
Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Midlothian, Scotland
Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
Higgs Ctr Theoret Phys, Edinburgh, Midlothian, ScotlandEotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
Szabo, Richard J.
[2
,3
,4
]
机构:
[1] Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new beta-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit beta = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and beta-ensembles of matrix models arising in refined topological string theory.