GLOBAL AND BLOWUP SOLUTIONS FOR GENERAL LOTKA-VOLTERRA SYSTEMS

被引:0
|
作者
Chen, Shaohua [1 ]
Xu, Runzhang [2 ]
Yang, Hongtao [2 ]
机构
[1] Cape Breton Univ, Sch Sci & Technol, Sydney, NS B1P 6L2, Canada
[2] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Global and blowup solutions; degenerate parabolic systems; Lotka-Volterra model; REACTION-DIFFUSION SYSTEM; LINEAR PARABOLIC-SYSTEMS; DIVERGENCE FORM; DEGENERATE; EXISTENCE; EQUATIONS; DYNAMICS;
D O I
10.3934/cpaa.2016012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with global and blowup solutions of the degenerate parabolic system u(t) = alpha(upsilon)del center dot (u(P del)u) vertical bar f (u, v) and upsilon t = beta(u)del center dot(upsilon(q)del upsilon) vertical bar g(u, upsilon) with homogeneous Dirichlet boundary conditions. We will give sufficient conditions such that the solutions either exist globally or blow up in a finite time. In special cases, a necessary and sufficient condition for the global existence is given.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 50 条
  • [41] Periodic Solutions of a Lotka-Volterra System with Delay and Diffusion
    Li, Lin
    Luo, Mingxing
    Nan, Zhijie
    Shi, Sihong
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [42] Positive solutions of a Lotka-Volterra competition model with cross-diffusion
    Jia, Yunfeng
    Wu, Jianhua
    Xu, Hong-Kun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1220 - 1228
  • [43] Spatially heterogeneous Lotka-Volterra competition
    Fernandez-Rincon, Sergio
    Lopez-Gomez, Julian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 165 : 33 - 79
  • [44] Lotka-Volterra Competition Model on Graphs
    Slavik, Antonin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 725 - 762
  • [45] Temporally Discrete Three-species Lotka-Volterra Competitive Systems with Time Delays
    Bian, Qiankun
    Zhang, Weiguo
    Yu, Zhixian
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 49 - 75
  • [46] TRAVELING WAVES FOR NONLOCAL LOTKA-VOLTERRA COMPETITION SYSTEMS
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1959 - 1983
  • [47] Classification and dynamics of stably dissipative Lotka-Volterra systems
    Zhao, Xiaohua
    Luo, Jigui
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (06) : 603 - 607
  • [48] Integrable and non-integrable Lotka-Volterra systems
    Bountis, Tassos
    Zhunussova, Zhanat
    Dosmagulova, Karlygash
    Kanellopoulos, George
    PHYSICS LETTERS A, 2021, 402
  • [49] ANALYSIS OF AUTONOMOUS LOTKA-VOLTERRA SYSTEMS BY LEVY NOISE
    Zhang, Qiumei
    Jiang, Daqing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 176 - 191
  • [50] Lotka-Volterra systems satisfying a strong Painleve property
    Bountis, Tassos
    Vanhaecke, Pol
    PHYSICS LETTERS A, 2016, 380 (47) : 3977 - 3982