GLOBAL AND BLOWUP SOLUTIONS FOR GENERAL LOTKA-VOLTERRA SYSTEMS

被引:0
|
作者
Chen, Shaohua [1 ]
Xu, Runzhang [2 ]
Yang, Hongtao [2 ]
机构
[1] Cape Breton Univ, Sch Sci & Technol, Sydney, NS B1P 6L2, Canada
[2] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Global and blowup solutions; degenerate parabolic systems; Lotka-Volterra model; REACTION-DIFFUSION SYSTEM; LINEAR PARABOLIC-SYSTEMS; DIVERGENCE FORM; DEGENERATE; EXISTENCE; EQUATIONS; DYNAMICS;
D O I
10.3934/cpaa.2016012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with global and blowup solutions of the degenerate parabolic system u(t) = alpha(upsilon)del center dot (u(P del)u) vertical bar f (u, v) and upsilon t = beta(u)del center dot(upsilon(q)del upsilon) vertical bar g(u, upsilon) with homogeneous Dirichlet boundary conditions. We will give sufficient conditions such that the solutions either exist globally or blow up in a finite time. In special cases, a necessary and sufficient condition for the global existence is given.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 50 条