GLOBAL AND BLOWUP SOLUTIONS FOR GENERAL LOTKA-VOLTERRA SYSTEMS

被引:0
作者
Chen, Shaohua [1 ]
Xu, Runzhang [2 ]
Yang, Hongtao [2 ]
机构
[1] Cape Breton Univ, Sch Sci & Technol, Sydney, NS B1P 6L2, Canada
[2] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Global and blowup solutions; degenerate parabolic systems; Lotka-Volterra model; REACTION-DIFFUSION SYSTEM; LINEAR PARABOLIC-SYSTEMS; DIVERGENCE FORM; DEGENERATE; EXISTENCE; EQUATIONS; DYNAMICS;
D O I
10.3934/cpaa.2016012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with global and blowup solutions of the degenerate parabolic system u(t) = alpha(upsilon)del center dot (u(P del)u) vertical bar f (u, v) and upsilon t = beta(u)del center dot(upsilon(q)del upsilon) vertical bar g(u, upsilon) with homogeneous Dirichlet boundary conditions. We will give sufficient conditions such that the solutions either exist globally or blow up in a finite time. In special cases, a necessary and sufficient condition for the global existence is given.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 15 条
[1]   Global existence and nonexistence for some degenerate and quasilinear parabolic systems [J].
Chen, Shaohua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) :1112-1136
[2]   Global and blowup solutions for general quasilinear parabolic systems [J].
Chen, Shaohua ;
MacDonald, Kristen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :423-433
[3]   BOUNDEDNESS AND BLOWUP SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH LOWER ORDER TERMS [J].
Chen, Shaohua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :587-600
[4]   Global existence and finite time blow up for a degenerate reaction-diffusion system [J].
Deng, WB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :977-991
[5]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[6]   A degenerate and strongly coupled quasilinear parabolic system with crosswise diffusion for a mutualistic model [J].
Han, Yuzhu ;
Gao, Wenjie .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3421-3430
[7]   A degenerate parabolic system with self-diffusion for a mutualistic model in ecology [J].
Kim, Kwang Ik ;
Lin, Zhigui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (04) :597-609
[8]  
Ladyzenskaja O. A., 1967, AM MATH SOC
[9]   Blow-up and global existence for a coupled system of degenerate parabolic equations in a bounded domain [J].
Mu Chunlai ;
Hu Xuegang ;
Li Yuhuan ;
Cui Zejian .
ACTA MATHEMATICA SCIENTIA, 2007, 27 (01) :92-106
[10]   Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion [J].
Pao, C. V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) :1721-1742