GLOBAL AND BLOWUP SOLUTIONS FOR GENERAL LOTKA-VOLTERRA SYSTEMS

被引:0
|
作者
Chen, Shaohua [1 ]
Xu, Runzhang [2 ]
Yang, Hongtao [2 ]
机构
[1] Cape Breton Univ, Sch Sci & Technol, Sydney, NS B1P 6L2, Canada
[2] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Global and blowup solutions; degenerate parabolic systems; Lotka-Volterra model; REACTION-DIFFUSION SYSTEM; LINEAR PARABOLIC-SYSTEMS; DIVERGENCE FORM; DEGENERATE; EXISTENCE; EQUATIONS; DYNAMICS;
D O I
10.3934/cpaa.2016012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with global and blowup solutions of the degenerate parabolic system u(t) = alpha(upsilon)del center dot (u(P del)u) vertical bar f (u, v) and upsilon t = beta(u)del center dot(upsilon(q)del upsilon) vertical bar g(u, upsilon) with homogeneous Dirichlet boundary conditions. We will give sufficient conditions such that the solutions either exist globally or blow up in a finite time. In special cases, a necessary and sufficient condition for the global existence is given.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 50 条
  • [1] Positive periodic solutions for Lotka-Volterra systems with a general attack rate
    Lois-Prados, Cristina
    Precup, Radu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 52
  • [2] Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal
    Hao, Yuxia
    Li, Wantong
    Wang, Jiabing
    Xu, Wenbing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2347 - 2376
  • [3] Traveling Wave Solutions in Temporally Discrete Lotka-Volterra Competitive Systems with Delays
    Peng, Huaqin
    Zhu, Qing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (06)
  • [4] Global Stability and Singularities for Lotka-Volterra Systems with Delays
    Faria, Teresa
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 138 - 147
  • [5] Almost periodic solutions for Lotka-Volterra systems with delays
    Liang, Yanlai
    Li, Lijie
    Chen, Lansun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) : 3660 - 3669
  • [6] Global asymptotic stability of stochastic Lotka-Volterra systems with infinite delays
    Liu, Meng
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (05) : 1431 - 1453
  • [7] Entire solutions of Lotka-Volterra strong competition systems with nonlocal dispersal
    Hao, Yu-Xia
    Li, Wan-Tong
    Zhang, Guo-Bao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [8] POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS LOTKA-VOLTERRA DYNAMIC SYSTEMS WITH A GENERAL ATTACK RATE ON TIME SCALES
    Bordj, Belkis
    Ardjouni, Abdelouaheb
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (05) : 1371 - 1385
  • [9] GENERALIZED STOCHASTIC DELAY LOTKA-VOLTERRA SYSTEMS
    Yin, Juliang
    Mao, Xuerong
    Wu, Fuke
    STOCHASTIC MODELS, 2009, 25 (03) : 436 - 454
  • [10] Conditional Symmetries and Exact Solutions of Diffusive Lotka-Volterra Systems
    Cherniha, Roman
    Davydovych, Vasyl'
    NONLINEAR REACTION-DIFFUSION SYSTEMS: CONDITIONAL SYMMETRY, EXACT SOLUTIONS AND THEIR APPLICATIONS IN BIOLOGY, 2017, 2196 : 77 - 118