A Multi-Frame GLMB Smoothing Based on the Image-Observation Sensor for Tracking Multiple Weak Targets Using Belief Propagation

被引:7
作者
Cao, Chenghu [1 ]
Zhao, Yongbo [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian 710121, Peoples R China
[2] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
关键词
multi-frame generalized labeled multi-Bernoulli smoothing; track-before-detect strategy; tracking multiple weak targets; belief propagation; RANDOM FINITE SETS; BERNOULLI FILTER; MULTITARGET TRACKING; EFFICIENT IMPLEMENTATION; MULTIOBJECT TRACKING; MODEL; CONVERGENCE; FUSION;
D O I
10.3390/rs14225666
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The previous multi-frame version of the generalized labeled multi-Bernoulli model (MF-GLMB) only accounts for standard measurement models. It is not suitable for application in the detection and tracking of multiple weak targets (low signal-to-noise ratio) due to the measurement information loss. In this paper, we introduce a MF-GLMB model that formally incorporates a track-before-detect scheme for point targets using an image sensor model. Furthermore, a belief propagation algorithm is adopted to approximately calculate the marginal association probabilities of the multi-target posterior density. In this formulation, an MF-GLMB model based on the track-before-detect measurement model (MF-GLMB-TBD smoothing) enables multi-target posterior recursion for multi-target state estimation. By taking the entire history of the state estimation into account, MF-GLMB-TBD smoothing achieves superior performance in estimation precision compared with the corresponding GLMB-TBD filter. The simulation results demonstrate that the performance of the proposed algorithm is comparable to or better than that of the Gibbs sampler-based version.
引用
收藏
页数:23
相关论文
共 35 条
[1]   VLSI Implementation of a Non-Binary Decoder Based on the Analog Digital Belief Propagation [J].
Awais, Muhammad ;
Masera, Guido ;
Martina, Maurizio ;
Montorsi, Guido .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (15) :3965-3975
[2]   Multi-Sensor Multi-Object Tracking With the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Beard, Michael .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) :5952-5967
[3]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[4]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[5]   Closed-Form Solutions to Forward-Backward Smoothing [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Mahler, Ronald P. S. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) :2-17
[6]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[7]   A Solution for Large-Scale Multi-Object Tracking [J].
Beard, Michael ;
Vo, Ba Tuong ;
Vo, Ba-Ngu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :2754-2769
[8]   Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets [J].
Beard, Michael ;
Vo, Ba-Tuong ;
Vo, Ba-Ngu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (06) :1433-1447
[9]   Multiple hypothesis tracking for multiple target tracking [J].
Blackman, SS .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) :5-18
[10]   A Generalized Labeled Multi-Bernoulli Filter With Object Spawning [J].
Bryant, Daniel S. ;
Ba-Tuong Vo ;
Ba-Ngu Vo ;
Jones, Brandon A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (23) :6177-6189