Study on simulation of RBF NN identification method based on adaptive structural optimization

被引:0
作者
Xiao, Yun-shi [1 ]
Ding, Hong-kai [1 ]
Yue, Ji-guang [1 ]
机构
[1] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R China
来源
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 | 2008年
关键词
nonlinear system identification; matrix encoding; particle swarm optimization; Structure Risk Minimization; RBF NN;
D O I
10.1109/WCICA.2008.4594207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel nonlinear system identification method based on adaptive structural optimization of radial basis function neural network using particle swarm optimization algorithm is proposed in this paper. Using matrix encoding strategy, all parameters such as hidden layer nodes number, central position, directional width, weights of RBF NN are estimated dynamically in global. Under the framework of Structure Risk Minimization, the RBF NN model with excellent approximation ability can be dredged with prediction risk fitness. The simulation results show the effectiveness of this method.
引用
收藏
页码:8174 / 8178
页数:5
相关论文
共 10 条
  • [1] CHEN S, 1992, INT J CONTROL, V56, P319, DOI [10.1080/00207179208934317, 10.1080/00207179008934126]
  • [2] Model complexity control for regression using VC generalization bounds
    Cherkassky, V
    Shao, XH
    Mulier, FM
    Vapnik, VN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1075 - 1089
  • [3] Ding HK, 2005, LECT NOTES COMPUT SC, V3610, P119
  • [4] Eberhart R., 1995, MHS 95 P 6 INT S MIC, DOI DOI 10.1109/MHS.1995.494215
  • [5] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [6] Fast Learning in Networks of Locally-Tuned Processing Units
    Moody, John
    Darken, Christian J.
    [J]. NEURAL COMPUTATION, 1989, 1 (02) : 281 - 294
  • [7] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    [J]. NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [8] A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms
    Sarimveis, H
    Alexandridis, A
    Mazarakis, S
    Bafas, G
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (1-2) : 209 - 217
  • [9] EFFICIENT IDENTIFICATION OF RBF NEURAL-NET MODELS FOR NONLINEAR DISCRETE-TIME MULTIVARIABLE DYNAMICAL-SYSTEMS
    TAN, SH
    HAO, JB
    VANDEWALLE, J
    [J]. NEUROCOMPUTING, 1995, 9 (01) : 11 - 26
  • [10] Vapnik V., 1998, STAT LEARNING THEORY, V1, P2