TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation

被引:14
|
作者
Abd-Ellah, Mahmoud Khaled [1 ]
Khalaf, Ashraf A. M. [2 ]
Awad, Ali Ismail [3 ,4 ]
Hamed, Hesham F. A. [2 ]
机构
[1] Al Madina Higher Inst Engn & Technol, Elect & Commun Dept, Giza, Egypt
[2] Minia Univ, Fac Engn, Al Minya, Egypt
[3] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
[4] Al Azhar Univ, Fac Engn, POB 83513, Qena, Egypt
来源
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II | 2019年 / 11663卷
关键词
Brain tumor segmentation; Computer-aided diagnosis; MRI images; Deep learning; Convolutional neural networks; TPUAR-Net; Parallel U-Net;
D O I
10.1007/978-3-030-27272-2_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The utilization of different types of brain images has been expanding, which makes manually examining each image a labor-intensive task. This study introduces a brain tumor segmentation method that uses two parallel U-Net with an asymmetric residual-based deep convolutional neural network (TPUAR-Net). The proposed method is customized to segment high and low grade glioblastomas identified from magnetic resonance imaging (MRI) data. Varieties of these tumors can appear anywhere in the brain and may have practically any shape, contrast, or size. Thus, this study used deep learning techniques based on adaptive, high-efficiency neural networks in the proposed model structure. In this paper, several high-performance models based on convolutional neural networks (CNNs) have been examined. The proposed TPUAR-Net capitalizes on different levels of global and local features in the upper and lower paths of the proposed model structure. In addition, the proposed method is configured to use the skip connection between layers and residual units to accelerate the training and testing processes. The TPUAR-Net model provides promising segmentation accuracy using MRI images from the BRATS 2017 database, while its parallelized architecture considerably improves the execution speed. The results obtained in terms of Dice, sensitivity, and specificity metrics demonstrate that TPUAR-Net outperforms other methods and achieves the state-of-the-art performance for brain tumor segmentation.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [1] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):
  • [2] Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes
    Kermi, Adel
    Mahmoudi, Issam
    Khadir, Mohamed Tarek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 37 - 48
  • [3] Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net)
    Alom, Md Zahangir
    Yakopcic, Chris
    Taha, Tarek M.
    Asari, Vijayan K.
    NAECON 2018 - IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, 2018, : 228 - 233
  • [4] A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images
    Khanna, Anita
    Londhe, Narendra D.
    Gupta, S.
    Semwal, Ashish
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1314 - 1327
  • [5] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [6] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [7] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [8] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [9] RDAU-Net: Based on a Residual Convolutional Neural Network With DFP and CBAM for Brain Tumor Segmentation
    Wang, Jingjing
    Yu, Zishu
    Luan, Zhenye
    Ren, Jinwen
    Zhao, Yanhua
    Yu, Gang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [10] An attention based residual U-Net with swin transformer for brain MRI segmentation
    Angona, Tazkia Mim
    Mondal, M. Rubaiyat Hossain
    ARRAY, 2025, 25