Affine Sergeev algebra and q-analogues of the Young symmetrizers for projective representations of the symmetric group

被引:21
作者
Jones, AR [1 ]
Nazarov, ML [1 ]
机构
[1] Univ York, Dept Math, York YO1 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S002461159900177X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:481 / 512
页数:32
相关论文
共 20 条
[1]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[2]   A NEW INTERPRETATION OF GELFAND-TZETLIN BASES [J].
CHEREDNIK, IV .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :563-577
[3]  
DIPPER R, 1987, P LOND MATH SOC, V54, P57
[4]  
GYOJA A, 1986, OSAKA J MATH, V23, P841
[5]   ON THE SEMISIMPLICITY OF HECKE ALGEBRAS [J].
GYOJA, A ;
UNO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1989, 41 (01) :75-79
[6]  
James G., 1981, The Representation Theory of the Symmetric Group
[7]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[8]   The structure of the Young symmetrizers for spin representations of the symmetric group, I [J].
Jones, AR .
JOURNAL OF ALGEBRA, 1998, 205 (02) :626-660
[9]  
Jucys A.-A. A., 1974, Reports on Mathematical Physics, V5, P107, DOI 10.1016/0034-4877(74)90019-6
[10]  
Lusztig G., 1989, J AM MATH SOC, V2, P599