A cobordism model for Waldhausen K-theory

被引:6
|
作者
Raptis, George [1 ]
Steimle, Wolfgang [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Augburg, Inst Math, D-86135 Augsburg, Germany
关键词
CATEGORIES;
D O I
10.1112/jlms.12182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a categorical construction called the cobordism category, which associates to each Waldhausen category a simplicial category of cospans. We prove that this construction is homotopy equivalent to Waldhausen's S center dot-construction and therefore it defines a model for Waldhausen K-theory. As an example, we discuss this model for A-theory and show that the cobordism category of homotopy finite spaces has the homotopy type of Waldhausen's A(*). We also review the canonical map from the cobordism category of manifolds to A-theory from this viewpoint.
引用
收藏
页码:516 / 534
页数:19
相关论文
共 50 条
  • [21] On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory
    I. A. Panin
    C. Walter
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 162 - 173
  • [22] COBORDISM-FRAMED CORRESPONDENCES AND THE MILNOR K-THEORY
    Tsybyshev, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 183 - 198
  • [23] Open-closed correspondence of K-theory and cobordism
    Ralph Blumenhagen
    Niccolò Cribiori
    Journal of High Energy Physics, 2022
  • [24] On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory
    Panin, I. A.
    Walter, C.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (01) : 162 - 173
  • [25] ON THE MOTIVIC SPECTRA REPRESENTING ALGEBRAIC COBORDISM AND ALGEBRAIC K-THEORY
    Gepner, David
    Snaith, Victor
    DOCUMENTA MATHEMATICA, 2009, 14 : 359 - 396
  • [26] Vexillary degeneracy loci classes in K-theory and algebraic cobordism
    Hudson, Thomas
    Matsumura, Tomoo
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 190 - 201
  • [27] On the relation of Voevodsky’s algebraic cobordism to Quillen’s K-theory
    Ivan Panin
    Konstantin Pimenov
    Oliver Röndigs
    Inventiones mathematicae, 2009, 175 : 435 - 451
  • [28] THE EQUIVARIANT K-THEORY AND COBORDISM RINGS OF DIVISIVE WEIGHTED PROJECTIVE SPACES
    Harada, Megumi
    Holm, Tara S.
    Ray, Nigel
    Williams, Gareth
    TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (04) : 487 - 513
  • [29] ALGEBRAIC COBORDISM AND A CONNER-FLOYD ISOMORPHISM FOR ALGEBRAIC K-THEORY
    Annala, Toni
    Hoyois, Marc
    Iwasa, Ryomei
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 38 (01) : 243 - 289
  • [30] On the relation of Voevodsky's algebraic cobordism to Quillen's K-theory
    Panin, Ivan
    Pimenov, Konstantin
    Roendigs, Oliver
    INVENTIONES MATHEMATICAE, 2009, 175 (02) : 435 - 451