Atomistic mechanism of graphene growth on a SiC substrate: Large-scale molecular dynamics simulations based on a new charge-transfer bond-order type potential

被引:14
作者
Takamoto, So [1 ]
Yamasaki, Takahiro [2 ]
Nara, Jun [2 ]
Ohno, Takahisa [2 ]
Kaneta, Chioko [3 ]
Hatano, Asuka [1 ]
Izumi, Satoshi [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Fujitsu Labs Ltd, 10-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430197, Japan
关键词
SILICON-CARBIDE; EPITAXIAL GRAPHENE; GRAPHITE FILMS; CARBON; SYSTEMS; LAYERS; FIELD;
D O I
10.1103/PhysRevB.97.125411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal decomposition of silicon carbide is a promising approach for the fabrication of graphene. However, the atomistic growth mechanism of graphene remains unclear. This paper describes the development of a new charge-transfer interatomic potential. Carbon bonds with a wide variety of characteristics can be reproduced by the proposed vectorized bond-order term. A large-scale thermal decomposition simulation enables us to observe the continuous growth process of the multiring carbon structure. The annealing simulation reveals the atomistic process by which the multiring carbon structure is transformed to flat graphene involving only six-membered rings. Also, it is found that the surface atoms of the silicon carbide substrate enhance the homogeneous graphene formation.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Step-edge instability during epitaxial growth of graphene from SiC(0001) [J].
Borovikov, Valery ;
Zangwill, Andrew .
PHYSICAL REVIEW B, 2009, 80 (12)
[4]   Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films [J].
Charrier, A ;
Coati, A ;
Argunova, T ;
Thibaudau, F ;
Garreau, Y ;
Pinchaux, R ;
Forbeaux, I ;
Debever, JM ;
Sauvage-Simkin, M ;
Themlin, JM .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2479-2484
[5]   Atomic structure of the 6H-SiC(0001) nanomesh [J].
Chen, W ;
Xu, H ;
Liu, L ;
Gao, XY ;
Qi, DC ;
Peng, GW ;
Tan, SC ;
Feng, YP ;
Loh, KP ;
Wee, ATS .
SURFACE SCIENCE, 2005, 596 (1-3) :176-186
[6]  
Dojima D., 2016, EUR C SIL CARB REL M, P609
[7]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/NMAT2382, 10.1038/nmat2382]
[8]   Pit formation during graphene synthesis on SiC(0001):: In situ electron microscopy [J].
Hannon, J. B. ;
Tromp, R. M. .
PHYSICAL REVIEW B, 2008, 77 (24)
[9]   Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons [J].
Hibino, H. ;
Kageshima, H. ;
Maeda, F. ;
Nagase, M. ;
Kobayashi, Y. ;
Yamaguchi, H. .
PHYSICAL REVIEW B, 2008, 77 (07)
[10]   Epitaxial few-layer graphene: towards single crystal growth [J].
Hibino, H. ;
Kageshima, H. ;
Nagase, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (37)