The core concept for the Multidimensional Knapsack Problem

被引:0
作者
Puchinger, Jakob [1 ]
Raidl, Guenther R.
Pferschy, Ulrich
机构
[1] Vienna Univ Technol, Inst Comp Graph & Algorithms, Vienna, Austria
[2] Graz Univ, Inst Stat & Operat Res, Graz, Austria
来源
EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS | 2006年 / 3906卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the newly developed core concept for the Multidimensional Knapsack Problem (MKP) which is an extension of the classical concept for the one-dimensional case. The core for the multidimensional problem is defined in dependence of a chosen efficiency function of the items, since no single obvious efficiency measure is available for MKP. An empirical study on the cores of widely-used benchmark instances is presented, as well as experiments with different approximate core sizes. Furthermore we describe a memetic algorithm and a relaxation guided variable neighborhood search for the MKP, which are applied to the original and to the core problems. The experimental results show that given a fixed run-time, the different metaheuristics as well as a general purpose integer linear programming solver yield better solution when applied to approximate core problems of fixed size.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 20 条
  • [1] AN ALGORITHM FOR LARGE ZERO-ONE KNAPSACK-PROBLEMS
    BALAS, E
    ZEMEL, E
    [J]. OPERATIONS RESEARCH, 1980, 28 (05) : 1130 - 1154
  • [2] Bertsimas D., 1997, Introduction to linear optimization
  • [3] A genetic algorithm for the multidimensional knapsack problem
    Chu, PC
    Beasley, JE
    [J]. JOURNAL OF HEURISTICS, 1998, 4 (01) : 63 - 86
  • [4] AN EFFICIENT PREPROCESSING PROCEDURE FOR THE MULTIDIMENSIONAL 0-1-KNAPSACK PROBLEM
    FREVILLE, A
    PLATEAU, G
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) : 189 - 212
  • [5] Glover F., 1996, METAHEURISTICS, P407, DOI [10.1007/978-1-4613-1361-8_25, DOI 10.1007/978-1-4613-1361-8_25]
  • [6] Gottlieb J, 1999, LNCS, V1829, P22
  • [7] Hansen P., 1999, Meta-heuristics, P433, DOI DOI 10.1007/978-1-4615-5775-3_30
  • [8] Keller H., 2004, KNAPSACK PROBLEMS
  • [9] A NEW ALGORITHM FOR THE 0-1 KNAPSACK-PROBLEM
    MARTELLO, S
    TOTH, P
    [J]. MANAGEMENT SCIENCE, 1988, 34 (05) : 633 - 644
  • [10] PIRKUL H, 1987, NAV RES LOG, V34, P161, DOI 10.1002/1520-6750(198704)34:2<161::AID-NAV3220340203>3.0.CO