The Actuator Line Model in Lattice Boltzmann Frameworks: Numerical Sensitivity and Computational Performance

被引:19
作者
Asmuth, Henrik [1 ]
Olivares-Espinosa, Hugo [1 ]
Nilsson, Karl [1 ]
Ivanell, Stefan [1 ]
机构
[1] Uppsala Univ, Wind Energy Sect, Campus Gotland, S-62167 Visby, Sweden
来源
WAKE CONFERENCE | 2019年 / 1256卷
关键词
LARGE-EDDY SIMULATION; WIND-TURBINE; TURBULENT FLOWS; SCALE; PARAMETRIZATION;
D O I
10.1088/1742-6596/1256/1/012022
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The growing use of large-eddy simulations for the modelling of wind farms makes the need for efficient numerical frameworks more essential than ever. GPU-accelerated implementations of the Lattice Boltzmann Method (LBM) have shown to provide significant performance gains over classical Navier-Stokes-based computational fluid dynamics. Yet, their use in the field of wind energy remains limited to date. In this fundamental study the cumulant LBM is scrutinised for actuator line simulations of wind turbines. The numerical sensitivity of the method in a simple uniform inflow is investigated with respect to spatial and temporal resolution as well as the width of the actuator line's regularisation kernel. Comparable accuracy and slightly better stability properties are shown in relation to a standard Navier-Stokes implementation. The results indicate the overall suitability of the cumulant LBM for wind turbine wake simulations. The potential of the LBM for future wind energy applications is clarified by means of a brief comparison of computational performance.
引用
收藏
页数:11
相关论文
共 52 条
  • [21] Actuator curve embedding - an advanced actuator line model
    Jha, Pankaj K.
    Schmitz, Sven
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 834
  • [22] Jonkman J., 2009, Report No. NREL/TP-500-38060, DOI [DOI 10.2172/947422, 10.2172/947422]
  • [23] Modelling urban airflow and natural ventilation using a GPU-based lattice-Boltzmann method
    King, Marco-Felipe
    Khan, Amirul
    Delbosc, Nicolas
    Gough, Hannah L.
    Halios, Christos
    Barlow, Janet F.
    Noakes, Catherine J.
    [J]. BUILDING AND ENVIRONMENT, 2017, 125 : 273 - 284
  • [24] Large-eddy simulations with a multiple-relaxation-time LBE model
    Krafczyk, M
    Tölke, J
    Luo, LS
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2): : 33 - 39
  • [25] Kruger T., 2016, LATTICE BOLTZMANN ME
  • [26] Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
    Lallemand, P
    Luo, LS
    [J]. PHYSICAL REVIEW E, 2000, 61 (06): : 6546 - 6562
  • [27] Wall model for large-eddy simulation based on the lattice Boltzmann method
    Malaspinas, O.
    Sagaut, P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 25 - 40
  • [28] Probing confined acoustic phonons in free standing small gold nanoparticles
    Mankad, Venu
    Jha, Prafulla K.
    Ravindran, T. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (07)
  • [29] Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution
    Martinez-Tossas, L. A.
    Churchfield, M. J.
    Meneveau, C.
    [J]. WIND ENERGY, 2017, 20 (06) : 1083 - 1096
  • [30] Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling
    Martinez-Tossas, Luis A.
    Churchfield, Matthew J.
    Yilmaz, Ali Emre
    Sarlak, Hamid
    Johnson, Perry L.
    Sorensen, Jens N.
    Meyers, Johan
    Meneveau, Charles
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2018, 10 (03)