Cyclic deformation behaviour, microstructural evolution and fatigue life of duplex steel AISI 329 LN

被引:12
作者
Knobbe, H. [1 ]
Starke, P. [2 ,3 ]
Herenu, S. [4 ]
Christ, H. -J. [1 ]
Eifler, D. [2 ]
机构
[1] Univ Siegen, Inst Werkstofftech, D-57068 Siegen, Germany
[2] Tech Univ Kaiserslautern, Lehrstuhl Werkstoffkunde, Kaiserslautern, Germany
[3] Univ Saarland, Lehrstuhl Zerstorungsfreie Prufung & Qualitatssic, Saarbrucken, Germany
[4] CONICET UNR, Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
关键词
Duplex steel; Fatigue life calculation; PHYBAL; Microstructure; Transmission electron microscopy; ELECTRICAL-RESISTANCE; RAPID-DETERMINATION; STRAIN; TEMPERATURE; LIMIT; PREDICTION; GROWTH;
D O I
10.1016/j.ijfatigue.2015.05.002
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper summarises fatigue results obtained on the duplex steel AISI 329 LN (German designation 1.4462). For the characterisation of the fatigue behaviour, the mechanical stress-strain hysteresis loops, the temperature change and the evolution of the electrical resistance were monitored. Transmission electron microscopy was performed to investigate the microstructural changes caused by the fatigue loading. The data were used to apply the fatigue life calculation method "PHYBAL(LIT)". This procedure requires only one load increase test and two constant amplitude tests for a timesaving and material-efficient assessment of S-N (Woehler) curves. The method has already been successfully applied to different carbon and austenitic steels as well as lightweight materials. The results show an excellent agreement between the conventionally determined and the calculated fatigue lifetimes. This agreement is rationalized on a microstructural basis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 27 条
  • [1] Akdut N, 1999, INT J FATIGUE, V21, pS97
  • [2] Basquin O. H., 1910, Proc Am Soc Test Mater, V10, P625
  • [3] Charrier J., 1991, Nondestructive Testing and Evaluation, V6, P113, DOI 10.1080/10589759108953132
  • [4] Structural health monitoring by electrical resistance measurement
    Chung, DDL
    [J]. SMART MATERIALS AND STRUCTURES, 2001, 10 (04) : 624 - 636
  • [5] ELECTRICAL-RESISTANCE AS AN INDICATOR OF FATIGUE
    CONSTABLE, JH
    SAHAY, C
    [J]. IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1992, 15 (06): : 1138 - 1145
  • [6] A new iteration method for the thermographic determination of fatigue limit in steels
    Curà, F
    Curti, G
    Sesana, R
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (04) : 453 - 459
  • [7] ESTIMATION OF THE FATIGUE LIMIT BY PROGRESSIVELY-INCREASING LOAD TESTS
    DENGEL, D
    HARIG, H
    [J]. FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1980, 3 (02): : 113 - 128
  • [8] Rapid determination of the fatigue curve by the thermographic method
    Fargione, G
    Geraci, A
    La Rosa, G
    Risitano, A
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2002, 24 (01) : 11 - 19
  • [9] FATIGUE LIFE PREDICTION OF HEAT-TREATED CARBON-STEELS AND LOW-ALLOY STEELS BASED ON A SMALL CRACK-GROWTH LAW
    GOTO, M
    NISITANI, H
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1994, 17 (02) : 171 - 185
  • [10] On the effect of nitrogen on duplex stainless steels
    Hertzman, S.
    Charles, J.
    [J]. REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2011, 108 (7-8): : 413 - 425