Disturbance evolution and the nonlinear stability to the basic flows for two-dimensional quasi-geostrophic motion

被引:1
作者
Song, SJ [1 ]
Liu, QY
机构
[1] Weihai Coll, Harbin Inst Technol, Weihai 264209, Peoples R China
[2] Ocean Univ Qingdao, Inst Phys Oceanog, Qingdao 266003, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 13期
关键词
two-dimensional quasi-geostrophic motion; disturbances of both initial values and parameters; stability;
D O I
10.1007/BF02885960
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The status of disturbances of both initial values and parameters in the models is further investigated, the exact explicit estimates on the disturbance energy and disturbance potential enstrophy are given; and while the initial disturbance fields rely only on the initial disturbance potential enstrophy, initial disturbance velocity circulation along the boundary, disturbance parameters, and the nonlinear stability criteria paralleling to Arnold's second theorem are obtained, and the main results of Mu are generalized.
引用
收藏
页码:1179 / 1184
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 1966, IZV VUZ MAT+
[2]  
Arnold VI, 1969, AM MATH SOC TRANSL, V19, P267
[3]   NONLINEAR STABILITY OF 2-DIMENSIONAL QUASI-GEOSTROPHIC MOTIONS [J].
MU, M .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1992, 65 (1-4) :57-76
[4]   ON ARNOLDS 2ND NONLINEAR STABILITY THEOREM FOR 2-DIMENSIONAL QUASI-GEOSTROPHIC FLOW [J].
MU, M ;
SHEPHERD, TG .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1994, 75 (01) :21-37
[5]  
MU M, 1998, ADV ATMOSPHERIC SCI, V11, P3
[6]  
Pedlosky J., 1979, GEOPHYSICAL FLUID DY