QUIVER VARIETIES AND HILBERT SCHEMES

被引:26
作者
Kuznetsov, Alexander [1 ,2 ]
机构
[1] VA Steklov Math Inst, Algebra Sect, Moscow 119991, Russia
[2] Independent Univ Moscow, Poncelet Lab, Moscow 119002, Russia
关键词
Quiver variety; Hilbert scheme; McKay correspondence; moduli space;
D O I
10.17323/1609-4514-2007-7-4-673-697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we give an explicit geometric description of some of the Nakajima's quiver varieties. More precisely, if X = C-2, Gamma subset of SL(C-2) is a finite subgroup, and X-Gamma is a minimal resolution of X/Gamma, we show that X-Gamma[n] (the Gamma-equivariant Hilbert scheme of X), and X-Gamma([n]) (the Hilbert scheme of X-Gamma) are quiver varieties for the affine Dynkin graph corresponding to via the McKay correspondence with the same dimension vectors but different parameters zeta (for earlier results in this direction see works by M. Haiman, M. Varagnolo and E. Vasserot, and W. Wang). In particular, it follows that the varieties X-Gamma[n] and X-Gamma([n]) are diffeomorphic. Computing their cohomology (in the case = Z/dZ) via the fixed points of a (C* x C*)-action we deduce the following combinatorial identity: the number UCY (n, d) of Young diagrams consisting of nd boxes and uniformly colored in d colors equals the number UCY (n, d) of collections of d Young diagrams with the total number of boxes equal to n.
引用
收藏
页码:673 / 697
页数:25
相关论文
共 50 条
  • [31] Hilbert schemes of 8 points
    Cartwright, Dustin A.
    Erman, Daniel
    Velasco, Mauricio
    Viray, Bianca
    ALGEBRA & NUMBER THEORY, 2009, 3 (07) : 763 - 795
  • [32] Quiver varieties and crystals in symmetrizable type via modulated graphs
    Nandakumar, Vinoth
    Tingley, Peter
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (01) : 159 - 180
  • [33] Loewy Series of Weyl Modules and the Poincare Polynomials of Quiver Varieties
    Kodera, Ryosuke
    Naoi, Katsuyuki
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (03) : 477 - 500
  • [34] From Oil Fields to Hilbert Schemes
    Kreuzer, Martin
    Poulisse, Hennie
    Robbiano, Lorenzo
    APPROXIMATE COMMUTATIVE ALGEBRA, 2009, : 1 - +
  • [35] Hilbert Schemes for Quantum Planes are Projective
    Chan, Daniel
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 119 - 126
  • [36] Vertex Operators, Grassmannians, and Hilbert Schemes
    Erik Carlsson
    Communications in Mathematical Physics, 2010, 300 : 599 - 613
  • [37] TAUTOLOGICAL SHEAVES ON HILBERT SCHEMES OF POINTS
    Wang, Zhilan
    Zhou, Jian
    JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (04) : 669 - 692
  • [38] Two Hilbert Schemes in Computer Vision
    Lieblich, Max
    Van Meter, Lucas
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2020, 4 (02): : 297 - 321
  • [39] Hilbert Schemes for Quantum Planes are Projective
    Daniel Chan
    Algebras and Representation Theory, 2010, 13 : 119 - 126
  • [40] Refined knot invariants and Hilbert schemes
    Gorsky, Eugene
    Negut, Andrei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03): : 403 - 435