On fractional Schrodinger equation in α-dimensional fractional space

被引:48
作者
Eid, Rajeh [2 ]
Muslih, Sami I. [3 ]
Baleanu, Dumitru [1 ]
Rabei, E. [4 ,5 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Atilim Univ, Dept Math, TR-06836 Incek Ankara, Turkey
[3] Al Azhar Univ, Dept Phys, Gaza, Israel
[4] Jerash Private Univ, Dept Sci, Jerash, Jordan
[5] Mutah Univ, Dept Phys, Al Karak, Jordan
关键词
Fractional space; Schrodinger equation; Fractional dimension; Radial equation;
D O I
10.1016/j.nonrwa.2008.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation is solved in a-dimensional fractional space with a Coulomb potential proportional to 1/r(beta-2), 2 <= beta <= 4. The wave functions are studied in terms of spatial dimensionality alpha and beta and the results for beta = 3 are compared with those obtained in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1304
页数:6
相关论文
共 17 条
  • [1] Abramowitz M., 1972, Handbook of Mathematical Functions
  • [2] EXCITONS IN ANISOTROPIC SOLIDS - THE MODEL OF FRACTIONAL-DIMENSIONAL SPACE
    HE, XF
    [J]. PHYSICAL REVIEW B, 1991, 43 (03): : 2063 - 2069
  • [3] A new kind of deformed calculus and parabosonic coordinate representation
    Jing, SC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30): : 6347 - 6354
  • [4] Kilbas A. A., 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [5] KILBAS AA, 2003, FRAC CALC APPL ANAL, V6, P400
  • [6] MAINARDI F, 2003, FRAC CALC APPL ANAL, V6, P459
  • [7] Bose-like oscillator in fractional-dimensional space
    Matos-Abiague, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (14): : 3125 - 3138
  • [8] Misner C.W., 1973, Gravitation
  • [9] Fractional multipoles in fractional space
    Muslih, Sami I.
    Baleanu, Dumitru
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) : 198 - 203
  • [10] Podlubny I., 1998, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications