Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection

被引:107
|
作者
Xu, Danqing [1 ]
Wu, Yiquan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
关键词
remote sensing image; target detection; multi-scale; YOLO-V3; convolutional neural network; DenseNet; SEGMENTATION;
D O I
10.3390/s20154276
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Remote sensing targets have different dimensions, and they have the characteristics of dense distribution and a complex background. This makes remote sensing target detection difficult. With the aim at detecting remote sensing targets at different scales, a new You Only Look Once (YOLO)-V3-based model was proposed. YOLO-V3 is a new version of YOLO. Aiming at the defect of poor performance of YOLO-V3 in detecting remote sensing targets, we adopted DenseNet (Densely Connected Network) to enhance feature extraction capability. Moreover, the detection scales were increased to four based on the original YOLO-V3. The experiment on RSOD (Remote Sensing Object Detection) dataset and UCS-AOD (Dataset of Object Detection in Aerial Images) dataset showed that our approach performed better than Faster-RCNN, SSD (Single Shot Multibox Detector), YOLO-V3, and YOLO-V3 tiny in terms of accuracy. Compared with original YOLO-V3, the mAP (mean Average Precision) of our approach increased from 77.10% to 88.73% in the RSOD dataset. In particular, the mAP of detecting targets like aircrafts, which are mainly made up of small targets increased by 12.12%. In addition, the detection speed was not significantly reduced. Generally speaking, our approach achieved higher accuracy and gave considerations to real-time performance simultaneously for remote sensing target detection.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条
  • [31] Diffusion model for multi-scale ship object detection and recognition in remote sensing images
    Chen, Lei
    Wang, Bin
    Liu, Ying
    Zhao, Shuang
    Guan, Qinghe
    Li, Guandian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [32] Multi-scale feature progressive fusion network for remote sensing image change detection
    Lu, Di
    Cheng, Shuli
    Wang, Liejun
    Song, Shiji
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] Building detection algorithm in multi-scale remote sensing images based on attention mechanism
    Wei Ding
    Li Zhang
    Guangliang Yang
    Evolutionary Intelligence, 2023, 16 : 1717 - 1728
  • [34] FE-YOLO: A Feature Enhancement Network for Remote Sensing Target Detection
    Xu, Danqing
    Wu, Yiquan
    REMOTE SENSING, 2021, 13 (07)
  • [35] YOLOv7-b: An Enhanced Object Detection Model for Multi-Scale and Dense Target Recognition in Remote Sensing Images
    Song, Yulong
    Yang, Hao
    Huang, Lijun
    Huang, Song
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 233 - 248
  • [36] MIFNet: Multi-Scale Interaction Fusion Network for Remote Sensing Image Change Detection
    Xie, Weiying
    Shao, Wenjie
    Li, Daixun
    Li, Yunsong
    Fang, Leyuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2725 - 2739
  • [37] Tender Tea Shoots Recognition and Positioning for Picking Robot Using Improved YOLO-V3 Model
    Yang, Hualin
    Chen, Long
    Chen, Miaoting
    Ma, Zhibin
    Deng, Fang
    Li, Maozhen
    Li, Xiangrong
    IEEE ACCESS, 2019, 7 : 180998 - 181011
  • [38] Improved SSD based aircraft remote sensing image target detection
    Wang Hao-tong
    Guo Zhong-hua
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (01) : 116 - 127
  • [39] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [40] Remote Sensing Image Automatic Registration on Multi-scale Harris-Laplacian
    Wang Weixing
    Cao Ting
    Liu Sheng
    Tu Enmei
    Journal of the Indian Society of Remote Sensing, 2015, 43 : 501 - 511