The stochastic θ-SEIHRD model: Adding randomness to the COVID-19 spread

被引:4
作者
Leitao, Alvaro [1 ]
Vazquez, Carlos
机构
[1] Univ A Coruna, CITIC, La Coruna, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 115卷
关键词
COVID-19; Compartmental models; Stochastic modelling; CIR process; Monte Carlo simulation; RODEs; EPIDEMIC;
D O I
10.1016/j.cnsns.2022.106731
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we mainly extend a newly introduced deterministic model for the COVID-19 disease to a stochastic setting. More precisely, we incorporated randomness in some coefficients by assuming that they follow a prescribed stochastic dynamics. In this way, the model variables are now represented by stochastic process, that can be simulated by appropriately solving the system of stochastic differential equations. Thus, the model becomes more complete and flexible than the deterministic analogous, as it incorporates additional uncertainties which are present in more realistic situations. In particular, confidence intervals for the main variables and worst case scenarios can be computed. (c) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:18
相关论文
共 26 条
  • [1] Allen Linda J S, 2017, Infect Dis Model, V2, P128, DOI 10.1016/j.idm.2017.03.001
  • [2] TIME SERIES ANALYSIS VIA MECHANISTIC MODELS
    Breto, Carles
    He, Daihai
    Ionides, Edward L.
    King, Aaron A.
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (01) : 319 - 348
  • [3] A stochastic differential equation SIS epidemic model with two independent Brownian motions
    Cai, Siyang
    Cai, Yongmei
    Mao, Xuerong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 1536 - 1550
  • [4] Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern)
    Corman, Victor M.
    Landt, Olfert
    Kaiser, Marco
    Molenkamp, Richard
    Meijer, Adam
    Chu, Daniel K. W.
    Bleicker, Tobias
    Bruenink, Sebastian
    Schneider, Julia
    Schmidt, Marie Luisa
    Mulders, Daphne G. J. C.
    Haagmans, Bart L.
    van der Veer, Bas
    van den Brink, Sharon
    Wijsman, Lisa
    Goderski, Gabriel
    Romette, Jean-Louis
    Ellis, Joanna
    Zambon, Maria
    Peiris, Malik
    Goossens, Herman
    Reusken, Chantal
    Koopmans, Marion P. G.
    Drosten, Christian
    [J]. EUROSURVEILLANCE, 2020, 25 (03) : 23 - 30
  • [5] A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES
    COX, JC
    INGERSOLL, JE
    ROSS, SA
    [J]. ECONOMETRICA, 1985, 53 (02) : 385 - 407
  • [6] Dormand JR., 1980, J. Comput. Appl. Math, V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
  • [7] Capturing the time-varying drivers of an epidemic using stochastic dynamical systems
    Dureau, Joseph
    Kalogeropoulos, Konstantinos
    Baguelin, Marc
    [J]. BIOSTATISTICS, 2013, 14 (03) : 541 - 555
  • [8] A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL
    Gray, A.
    Greenhalgh, D.
    Hu, L.
    Mao, X.
    Pan, J.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) : 876 - 902
  • [9] Han X, 2017, PROB THEOR STOCH MOD, V85, P1, DOI 10.1007/978-981-10-6265-0
  • [10] Dynamics Analysis of a Nonlinear Stochastic SEIR Epidemic System with Varying Population Size
    Han, Xiaofeng
    Li, Fei
    Meng, Xinzhu
    [J]. ENTROPY, 2018, 20 (05)