Nodal solutions of weighted indefinite problems

被引:5
作者
Fencl, M. [1 ,2 ]
Lopez-Gomez, J. [3 ]
机构
[1] Univ West Bohemia, Dept Math, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[2] Univ West Bohemia, NTIS, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[3] Univ Complutense Madrid, Inst Interdisciplinary Math IMI, Dept Anal & Appl Math, Madrid 28040, Spain
关键词
Superlinear indefinite problems; Weighted problems; Positive solutions; Nodal solutions; Eigencurves; Concavity; Bifurcation; Global components; Path-following; Pseudo-spectral methods; Finite-difference scheme; FINITE-DIMENSIONAL APPROXIMATION; NUMERICAL COMPUTATION; BIFURCATION DIAGRAMS; NONLINEAR PROBLEMS; POSITIVE SOLUTIONS; MULTIPLICITY; PRINCIPLE; EQUATIONS; DYNAMICS;
D O I
10.1007/s00028-020-00625-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes the structure of the set of nodal solutions, i.e., solutions changing sign, of a class of one-dimensional superlinear indefinite boundary value problems with indefinite weight functions in front of the spectral parameter. Quite surprisingly, the associated high-order eigenvalues may not be concave as is the case for the lowest one. As a consequence, in many circumstances, the nodal solutions can bifurcate from three or even four bifurcation points from the trivial solution. This paper combines analytical and numerical tools. The analysis carried out is a paradigm of how mathematical analysis aids the numerical study of a problem, whereas simultaneously the numerical study confirms and illuminates the analysis.
引用
收藏
页码:2815 / 2835
页数:21
相关论文
共 50 条
  • [41] Global bifurcation result and nodal solutions for Kirchhoff-type equation
    Ye, Fumei
    Han, Xiaoling
    AIMS MATHEMATICS, 2021, 6 (08): : 8331 - 8341
  • [42] Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition
    Dai, Guowei
    Ma, Ruyun
    Lu, Yanqiong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 119 - 123
  • [43] Existence of positive solutions to discrete second-order boundary value problems with indefinite weight
    Chenghua Gao
    Guowei Dai
    Ruyun Ma
    Advances in Difference Equations, 2012
  • [44] Nodal solutions for fractional Schrodinger-Poisson problems
    Long, Wei
    Yang, Jianfu
    Yu, Weilin
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (11) : 2267 - 2286
  • [45] Nodal Solutions for a Weighted (p,q)-Equation
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (02) : 559 - 570
  • [46] ARBITRARILY SMALL NODAL SOLUTIONS FOR PARAMETRIC ROBIN (p, q)-EQUATIONS PLUS AN INDEFINITE POTENTIAL
    Leonardi, Salvatore
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 561 - 574
  • [47] On a class of elliptic problems with indefinite nonlinearities
    Medeiros, Everaldo S.
    Severo, Uberlandio B.
    Silva, Elves A. B.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (3-4) : 751 - 777
  • [48] Parametric Singular Problems with an Indefinite Perturbation
    Bien, Krzysztof
    Majdak, Witold
    Papageorgiou, Nikolaos S.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)
  • [49] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    POSITIVITY, 2020, 24 (02) : 339 - 367
  • [50] Superlinear Weighted (p, q)-Equations with Indefinite Potential
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (03) : 967 - 982