Nodal solutions of weighted indefinite problems

被引:5
|
作者
Fencl, M. [1 ,2 ]
Lopez-Gomez, J. [3 ]
机构
[1] Univ West Bohemia, Dept Math, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[2] Univ West Bohemia, NTIS, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[3] Univ Complutense Madrid, Inst Interdisciplinary Math IMI, Dept Anal & Appl Math, Madrid 28040, Spain
关键词
Superlinear indefinite problems; Weighted problems; Positive solutions; Nodal solutions; Eigencurves; Concavity; Bifurcation; Global components; Path-following; Pseudo-spectral methods; Finite-difference scheme; FINITE-DIMENSIONAL APPROXIMATION; NUMERICAL COMPUTATION; BIFURCATION DIAGRAMS; NONLINEAR PROBLEMS; POSITIVE SOLUTIONS; MULTIPLICITY; PRINCIPLE; EQUATIONS; DYNAMICS;
D O I
10.1007/s00028-020-00625-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes the structure of the set of nodal solutions, i.e., solutions changing sign, of a class of one-dimensional superlinear indefinite boundary value problems with indefinite weight functions in front of the spectral parameter. Quite surprisingly, the associated high-order eigenvalues may not be concave as is the case for the lowest one. As a consequence, in many circumstances, the nodal solutions can bifurcate from three or even four bifurcation points from the trivial solution. This paper combines analytical and numerical tools. The analysis carried out is a paradigm of how mathematical analysis aids the numerical study of a problem, whereas simultaneously the numerical study confirms and illuminates the analysis.
引用
收藏
页码:2815 / 2835
页数:21
相关论文
共 50 条
  • [21] NODAL SOLUTIONS FOR SINGULAR SECOND-ORDER BOUNDARY-VALUE PROBLEMS
    Benmezai, Abdelhamid
    Esserhane, Wassila
    Henderson, Johnny
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [22] Existence of positive solutions to discrete second-order boundary value problems with indefinite weight
    Gao, Chenghua
    Dai, Guowei
    Ma, Ruyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 10
  • [23] MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEMS IN RN
    Alves, Claudianor O.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (02) : 231 - 250
  • [24] On linear and nonlinear fourth-order eigenvalue problems with indefinite weight
    Ma, Ruyun
    Gao, Chenghua
    Han, Xiaoling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 6965 - 6969
  • [25] Periodic solutions to superlinear indefinite planar systems: A topological degree approach
    Feltrin, Guglielmo
    Sampedro, Juan Carlos
    Zanolin, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 546 - 581
  • [26] Nodal solutions of multi-point boundary value problems
    Kong, Lingju
    Kong, Qingkai
    Wong, James S. W.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 382 - 389
  • [27] Positive solutions for Neumann problems with indefinite and unbounded potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    APPLIED MATHEMATICS LETTERS, 2014, 35 : 7 - 11
  • [28] EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR PROBLEMS WITH INDEFINITE DISCONTINUITIES
    Calahorrano, Marco
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 95 - 101
  • [29] Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity
    de Paiva, Francisco Odair
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) : 2569 - 2586
  • [30] Bifurcation and nodal solutions of mean curvature equation with indefinite weight in Minkowski space
    Ma, Ruyun
    Yang, Wei
    Su, Xiaoxiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):