Nodal solutions of weighted indefinite problems

被引:5
作者
Fencl, M. [1 ,2 ]
Lopez-Gomez, J. [3 ]
机构
[1] Univ West Bohemia, Dept Math, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[2] Univ West Bohemia, NTIS, Fac Sci Appl, Univerzitni 8, Plzen 30100, Czech Republic
[3] Univ Complutense Madrid, Inst Interdisciplinary Math IMI, Dept Anal & Appl Math, Madrid 28040, Spain
关键词
Superlinear indefinite problems; Weighted problems; Positive solutions; Nodal solutions; Eigencurves; Concavity; Bifurcation; Global components; Path-following; Pseudo-spectral methods; Finite-difference scheme; FINITE-DIMENSIONAL APPROXIMATION; NUMERICAL COMPUTATION; BIFURCATION DIAGRAMS; NONLINEAR PROBLEMS; POSITIVE SOLUTIONS; MULTIPLICITY; PRINCIPLE; EQUATIONS; DYNAMICS;
D O I
10.1007/s00028-020-00625-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes the structure of the set of nodal solutions, i.e., solutions changing sign, of a class of one-dimensional superlinear indefinite boundary value problems with indefinite weight functions in front of the spectral parameter. Quite surprisingly, the associated high-order eigenvalues may not be concave as is the case for the lowest one. As a consequence, in many circumstances, the nodal solutions can bifurcate from three or even four bifurcation points from the trivial solution. This paper combines analytical and numerical tools. The analysis carried out is a paradigm of how mathematical analysis aids the numerical study of a problem, whereas simultaneously the numerical study confirms and illuminates the analysis.
引用
收藏
页码:2815 / 2835
页数:21
相关论文
共 43 条
[1]  
[Anonymous], 2003, SIAM CLASSICS APPL M
[2]  
[Anonymous], 1986, LECT NOTES MATH
[3]  
[Anonymous], 1980, Comm. Partial Differential Equations, DOI DOI 10.1080/03605308008820162
[4]  
Anton I., 2017, Rend. Istit. Mat. Univ. Trieste, V49, P287
[5]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[6]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[7]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .2. LIMIT POINTS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1981, 37 (01) :1-28
[8]  
BREZZI F, 1981, NUMER MATH, V38, P1, DOI 10.1007/BF01395805
[9]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[10]  
Buttazzo G., 1998, One-dimensional variational problems: an introduction