Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery

被引:11
作者
Yang, Qing-Qing
Feng, Kai
Xu, Zhi-Sheng
Duan, Ao-Qi
Liu, Jie-Xia
Xiong, Ai-Sheng
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Minist Agr, Coll Hort, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Rural Affairs Key Lab Biol & Germplasm Enhancemen, Coll Hort, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
abiotic stress; bZIP; celery; expression profiles; evolution; transcription factors; LEUCINE ZIPPER; GENE FAMILY; DNA; ROLES; EXPRESSION; PROLINE; DOMAIN;
D O I
10.1080/13102818.2019.1611386
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Celery (Apium graveolens L.) is one of the most important vegetables in the Apiaceae family, rich in nutrients and widely grown around the world. bZIP transcription factors family plays an important role in the transcription regulation of plant growth and development, as well as adaptation to the external environment. In this paper, 62 bZIP family transcription factors were screened and identified based on the whole genome sequence of celery. The bZIP proteins of celery and Arabidopsis thaliana were divided into 10 subfamilies according to the phylogenetic tree. Phylogenetic and evolutionary analysis showed that the number of bZIP family members gradually expanded from lower plants to higher plants during the long evolution process. Based on the homology of celery and A. thaliana bZIP genes, the interaction network between celery bZIP transcription factors and other proteins in the genome was constructed, and the correlation data of protein interaction were also obtained. The expression profiles of 12 selected AgbZIP genes were detected and analyzed under abiotic stress treatments and different tissues using RT-qPCR. The results showed that AgbZIP can respond to high temperature, low temperature, drought, and high salt stress.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 42 条
[41]   Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family [J].
Zhao, Jiao ;
Guo, Rongrong ;
Guo, Chunlei ;
Hou, Hongmin ;
Wang, Xiping ;
Gao, Hua .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[42]   A Novel Maize Homeodomain-Leucine Zipper (HD-Zip) I Gene, Zmhdz10, Positively Regulates Drought and Salt Tolerance in Both Rice and Arabidopsis [J].
Zhao, Yang ;
Ma, Qing ;
Jin, Xiaolei ;
Peng, Xiaojian ;
Liu, Jinyang ;
Deng, Lin ;
Yan, Hanwei ;
Sheng, Lei ;
Jiang, Haiyang ;
Cheng, Beijiu .
PLANT AND CELL PHYSIOLOGY, 2014, 55 (06) :1142-1156